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1 Lecture 1 – Introduction

1.1 Brief Overview of the Course

This course is an invitation to differential equations. What is a differential equation? Broadly
speaking, it is an equation that relates functions to their derivatives. A lot of the differential
equations that we study comes from physics, and our main techniques to understand these equations
are linear algebra and multivariable calculus.

Ordinary Differential Equations

A standard topic in introductory physics is radioactive decay, where the associated differential
equation is

dN

dt
= −kN

for some constant k. The solution is well-known; it is

N(t) = e−ktN0.

There are a lot more physical solutions of this form. For example, the change in density as height
varies is given by

dρ

dy
= −gM

RT
ρ.

All these differential equations are of first degree. One can ask for the solution to higher-degree
equations. For example, Hooke’s Law for an isolated frictionless body can be described by

d2x

dt2
= −ω2x.

Here the solution is well-known too; it is

x(t) = A cos(ωt+ φ0).

A large part of the course is to study these kinds of equations, called ordinary differential equations
(ODEs). We will start with ODEs having constant coefficients. In fact, we generalize and study
the higher dimensional version of it, for it is unreasonable for us to only work in one dimension
in physics. One obvious example is modeling the oscillations of a bridge. To do this we will need
to apply techniques from linear algebra, most notably the concept of eigenvalues and eigenvectors.
This will be our starting point after some warmup with one-dimensional ODEs.

There are also numerous famous ODEs that are not linear. For example, vertical upward
movement with resistance in liquids can be modeled by

dv

dt
= µg

(
1− c

µgm
v2
)

and the solution to this equation is

v(t) =

√
µgm

c
tanh

√
µgc

m
t.

Another example is Newton’s Law of Gravitation:

#»x ′′(t) = − GM

‖ #»x(t)‖3
#»x(t).
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Yet another example is the predator-prey model, given by

dx

dt
= αx− βxy,

dy

dt
= δxy − γy.

We will study how to solve these kinds of ODEs, or quantitatively sketch solutions to them if
an explicit solutions cannot be easily found (for example, how to analyze equilibrium points and
linearize the ODEs near these points). In fact, understanding the mathematics behind Newton’s
Law of Gravitation is the extra credit assignment; see subsection 21.11.

Example 1.1. Let us illustrate what we mean by “solving ODEs” and “sketching solutions quan-
titatively” using the following system of differential equations

x′(t) = −y(t), y′(t) = x(t), x(t0) = x0, y(t0) = y0.

We will develop techniques to solve these kinds of equations; right now this example is just to let
you have a feel for the kind of stuff we will do.

Let us solve this equation. Writing #»x(t) = (x(t), y(t)), one can rewrite our equations as

#»x ′(t) =

[
0 −1
1 0

]
#»x(t), #»x(t0) = (x0, y0).

Letting A be the matrix above, the solution to this equation is

#»x(t) = etA #»x(t0) =

[
cos(t) − sin(t)
sin(t) cos(t)

] [
x0
y0

]
=

[
x0 cos(t)− y0 sin(t)
x0 sin(t) + y0 cos(t)

]
.

In this example it is not hard to observe that #»x(t) is actually a circle: writing r2 = x20 + y20, one
sees that

(x(t))2 + (y(t))2 = r2.

Of course, it is not this easy to understand the behavior of most solutions to our differential
equations by staring at the explicit solution in this course, so we need to develop another technique.
For this we write down the vector field

#»v (x, y) = (−y, x)

associated to our system of differential equations, and observe that #»v⊥(x, y) = (x, y) is conservative
with associated function f(x, y) = (x2 + y2)/2 satisfying

∇f(x, y) = #»v⊥(x, y),

d

dt
f(x(t), y(t)) = ∇f(x, y) · #»v (x, y) = 0.

Hence the unique solution #»x(t) must satisfy f( #»x(t)) = c for some constant c, and substituting the
initial condition tells us c = (x20 + y20)/2.

It is hard to solve ODEs, and we really only have a good general theory for linear ODEs (which
is the main topic for this course). In real life it is not realistic to assume that our coefficients in
our ODEs will always be constant. For example, the spring constant may decrease with time as
the spring weakens. We will also study ODEs with varying coefficients, paying special attention to
the case of second order ODEs. We resist giving an example in this introduction.
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Calculus of Variations

In the exact sciences it is important for us to know how to minimize and maximize functions subject
to constraints. It is not surprising that this is related to differential equations. A standard example
is to find f : [0, 1]−→R such that f(0) = 0 and f(1) = 1 and such that the arc length

∫ 1

0

√
1 +

(
df

dx

)2

dx

is minimized. We will see how the line must be the straight line from (0, 0) to (1, 1), agreeing with
intuition. Another example is to find a frictionless surface such that a ball rolls off of it the fastest,
and this is the Brachistochrone problem. In the last bit of the course we will talk about how to
maximize or minimize such functions, using something called the Euler-Lagrange Equation.

Not in Math 240: Laplace Transforms

The theory of Laplace transforms is another method of solving ODEs. This is an important tool
in analysis, much like the theory of Fourier transform which you may know. Unfortunately, we will
not be able to study Laplace transforms and how it comes into play when solving ODEs.

An application of this theory is to derive the solution to the impulse forcing differential equation,
which is the mathematical description of a harmonic oscillator being struck by a hammer at a
certain time. The linear algebraic method that we have briefly illustrated in the previous example
is unsuitable for this case as the striking of the hammer is modeled by the Dirac Delta function,
which is not a function in the ordinary sense (rather, it is an example of what mathematicians call
a distribution).

Math 241: Partial Differential Equations

The above equations are all examples of ODEs. However, there are evidently lots of physical
equations where the variables have more than one dependencies. For example, the wave equation
is given by

∂2u

∂t2
= c2∇2u.

Such equations are called partial differential equations (PDEs), and a lot of the techniques are very
similar to our analysis of ODEs, in particular Sturm-Liouville Theory. Unfortunately we will not
have time to study PDEs; this is left for Math 241.

1.2 Separable ODEs

Let us start the course with a warmup, which is to solve one-dimensional separable ODEs. This is
an equation of the form

f(y)y′ = g(x)

for continuous functions f and g. It is clear that we simply need to integrate both sides to get a
general solution, i.e. to carry out ∫

f(y) dy =

∫
g(x) dx.

Of course one has to check where the solution makes sense.
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Example 1.2. Solving
t+ xx′ = 0

tells us
x(t) = ±

√
2c− t2, −

√
2c ≤ t ≤

√
2c.

Giving us initial conditions will tell us how to choose the unique solution, if possible.

Example 1.3. Solving
x′ = et+x

tells us
x(t) = − ln(−c− et), t < ln(−c)

Again giving us initial conditions will tell us how to choose the unique solution, if possible. Let us
observe for this example that

lim
t→ln(−c)−

x(t) =∞.

1.3 First Order Linear ODEs

This is a differential equation of the form

x′(t) = p(t)x(t) + q(t), x(t0) = x0.

In order to solve for x(t) one simply consider the integrating factor e−
∫
p(t) dt. Multiplying this

gives us
d

dt

(
x(t)e−

∫
p(t) dt

)
= q(t)e−

∫
p(t) dt.

Integrating tells us

x(t) = eP (t)−P (t0)x0 + eP (t)

∫ t

t0

e−P (s)q(s) ds,

where P (t) is an antiderivative of p(t).

Remark. The condition x(t0) = x0 is called the initial condition of the ODE (left ambiguous in
the above examples). In general, if we are given a differential equation without conditions, then the
solution we get is called the general solution since it depends on undetermined constants. Initial
conditions allow us to pinpoint which solution we pick among the family of general solution.

Example 1.4. Consider the ODE

tx′ = −x+ t2, x(1) = 1

on the interval t > 0. We divide throughout by t to convert it into the form above:

x′ = −x
t

+ t.

The integrating factor in this case is eln t = t, and we need to solve

d

dt
(tx) = t2.

After integration, the general solution is

x(t) =
t3

3
+
c

t
.

If we substitute in x(1) = 1, the solution is

x(t) =
t3

3
+

2

3t
.
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1.4 Bernoulli ODEs

A Bernoulli ODE can be seen as a generalization of a first order linear ODE, and is a differential
equation of the form

x′(t) = p(t)x(t) + q(t)xn(t), n 6= 0, 1.

(If n = 0, 1 then this ODE reduces to a first order linear ODE.) To solve for x(t) one considers the
change of variables

y = x1−n,

transforming this ODE into

y′(t) = (1− n)p(t)y(t) + (1− n)q(t).

We can then solve for the general solution y(t) by an integrating factor, and x(t) = 1−n
√
y(t). If an

initial condition is given, then we can find the particular solution.

1.5 Ricatti ODEs

A Ricatti ODE is a differential equation of the form

x′(t) = p(t) + q(t)x(t) + r(t)x2(t).

We can solve this ODE if we have a particular solution x1(t), i.e. a function that satisfies the ODE
above. If this particular solution is found, we can consider the translation u(t) = x(t) − x1(t).
Substituting this relation into the above ODE tells us that

u′ − (q + 2rx1)u− ru2 = 0,

which is a Bernoulli ODE with n = 2. Therefore, to solve a Ricatti ODE one considers the following
steps:
• Find a particular solution x1(t).
• Solve the Bernoulli ODE u′(t) = (q(t) + 2r(t)x1(t))u(t) + r(t)u2(t).
• The general solution will be x(t) = x1(t) + u(t).

We will study some other ODEs which can only be solved after finding a particular solution.

Example 1.5. Consider the ODE

x′ = 2t− x

t
+
x2

t3
.

We need to find a particular solution. Since the coefficients involves only powers of t, we guess a
solution of the form

x(t) = ctα.

Substituting this into the ODE tells us that α = 2 and c = 1, 2, so we pick the particular solution
x1(t) = t2. The associated Bernoulli ODE is

u′ =
1

t
u+

1

t3
u2.

To solve u(t) one considers the change of variables z = u1−2 = u−1, transforming this ODE into

z′ = −1

t
z − 1

t3
.

8



This is now a first order ODE; solving this gives

z(t) =
ct+ 1

t2
,

implying

u(t) =
t2

ct+ 1
.

Thus the general solution to the original ODE is

x(t) = x1(t) + u(t) = t2 +
t2

ct+ 1
.

1.6 Reduction of Order

Reduction of order is a technique where we introduce a new variable for the first derivative. This
will be an important idea throughout the course. We now demonstrate this via a simple example.

Example 1.6. Consider the equation

tx′′ − x′ = t3.

If we let y = x′, then the equation becomes

ty′ − y = t3.

This is a first order linear ODE, and its solution is

y(t) =
t3

4
+
c1
t
.

Integrating y = x′ tells us that

x(t) =
t4

16
+ c1 ln(t) + c2.
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2 Lecture 2 – Matrices

This is the first of three lectures giving a crash course in linear algebra. After these three lectures
we will introduce additional concepts in linear algebra that we need as we go along.

2.1 Row Echelon Form

The primary goal of introducing matrices in our course is to solve a system of linear equations

a11x1 + · · ·+ a1nxn = b1,

a21x1 + · · ·+ a2nxn = b2,

...
...

...

am1x1 + · · ·+ amnxn = bm.

We can arrange it in terms of matrices in two ways.

The first way is to write the coefficients as a m × (n + 1) array of numbers
[
A| #»

b
]
, or more

explicitly 
a11 · · · a1n b1
a21 · · · a2n b2
...

...
...

...
am1 · · · amn bm

 .
We can then try to solve this equation via row operations, which we explain in a bit.

The second way is to write it in terms of matrix multiplication AX =
#»

b , or more explicitlya11 · · · a1n
...

. . .
...

am1 · · · amn


x1...
xn

 =

 b1...
bm

 .
To make sense of the left-hand side we define matrix multiplication between an m×n matrix and an
n×1 matrix in the obvious sense, such that the rows corresponds to our system of linear equations.
(We define a matrix to simply be an array of numbers; we will give it a deeper meaning next time.)
The general formula for matrix multiplication will be given later, and again in the next lecture.

Let us now concentrate on the first way of writing coefficients. Clearly, subtracting, scaling,
and adding rows with one another corresponds to solving equations, just like how you would in
high school. Recall we denoted A be the m×n array of aij ’s corresponding to the array of numbers[
A| #»

b
]
.

Definition 2.1. A matrix A is in row echelon form (REF) if
• rows with all zeros are below any row with nonzero entries,
• the nonzero leading coefficient, or pivot of a row is strictly to the right of the nonzero leading

coefficient of the row above it.
In addition, if every nonzero leading coefficient of A equals 1, and every column containing a 1 has
zero in every other entry, then A is in reduced row echelon form (RREF).

Every matrix can be reduced to REF after performing a sequence of row operations. For
example, the left matrix below is in REF but not the right matrix.2 5 8 0

0 0 3 0
0 0 0 0

 2 5 8 0
0 0 3 0
0 0 1 0


10



The REF for both matrices above are the same, and after performing more row operations their
RREF is 1 5/2 0 0

0 0 1 0
0 0 0 0

 .
There exists a systematic way of computing REF and RREF using something called Gaussian
elimination, but this is quite obvious and will not be outlined here. The method is really what you
think it is.

Definition 2.2. The rank of A is the number of leading coefficients after performing REF.

Let us return to our system of equations
[
A| #»

b
]
. Such a systems always have zero, one, or

infinitely many solutions, and the way to determine this is by performing row operations until A is
in REF or RREF. The system has:
• no solutions if there are inconsistencies, i.e. if the last nonzero row after performing RREF is

[ 0 · · · 0 γ ], γ 6= 0,

corresponding to 0 = 1;
• one solution if the system is consistent and there are no free variables, i.e. rankA equals the

number of columns of A;
• infinitely many solutions if the system is consistent and there are free variables, i.e. rankA

is less than the number of columns of A.

Example 2.3. Let us consider the system of equations 1 2 1 1
−2 −5 1 3
3 5 0 1

.

 ,
 1 2 1 1
−2 −5 1 3
3 5 0 0

.

 .
After REF, we obtain  1 2 1 1

0 1 3 5
0 0 0 3

 ,
 1 2 1 1

0 1 3 5
0 0 0 0

 .
There are no solutions for the first system, and for the second system

x3 = t, x2 = 5− 3t, x1 = −9− 5t.

2.2 Determinants and Invertible Matrices

We now restrict to the case where A is an n × n matrix. The situation is the same as before: we
want to solve a system of linear equations. The previous subsection tells us how to determine if
this systems has solutions. We now give a criteria to determine if the system has a unique solution.
To do this, we use the second way of thinking: writing the system of equations as AX =

#»

b .

Definition 2.4. The determinant of an n×n matrix A = (aij) can be recursively defined as follow.
• If n = 1, then detA = a11.
• If n = 2, then detA = a11a22 − a12a21.
• If n > 2, then detA can be computed in one of two ways.

11



– Pick a row (aj1, . . . , ajn) of A, and let Ai be the matrix after removing the jth row and
ith column of A. Then

detA =
n∑
i=1

(−1)j+iaji detAi.

– Pick a column (a1j , . . . , anj) of A, and let Ai be the matrix after removing the ith row
and jth column of A. Then

detA =

n∑
i=1

(−1)i+jaij detAi.

One can check that detA is well-defined, and in fact equals the mathematical definition

detA =
∑
σ∈Sn

sgn(σ)
n∏
i=1

aiσ(i);

we will not do this here.

Example 2.5. The determinant of a 3× 3 matrixa b c
d e f
g h i


is aei+ bfg + cdh− (ceg − bdi− afh).

Example 2.6. Using the definition above,

det


2 −1 3 0
−3 1 0 4
−2 1 4 1
−1 3 0 −2

 = 3

−3 1 4
−2 1 1
−1 3 −2

− 0

−2 1 0
−2 1 1
−1 3 −2

+ 4

−2 1 0
−3 1 4
−1 3 −2

− 0

−2 1 0
−3 1 4
−2 1 1


= 3 · (−10) + 0 + 4 · (−18) + 0

= −102.

Example 2.7. The determinant of an upper triangular matrix
a1 ∗ · · · ∗

0 a2
. . .

...

0 0
. . . ∗

0 0 an


is a1 · · · an. The same formula holds for lower triangular matrices.

Before we state some important facts on determinants, let us define matrix multiplication; we
will restate it in the next lecture. Given two n× n matrices A = (aij) and B = (bi′j′), the product
AB has (i, j)th entry

ai1b1j + ai2b2j + · · ·+ ainbnj .

Example 2.8. One has

A =

[
2 1
0 4

]
, B =

[
1 0
3 0

]
, AB =

[
5 0
12 0

]
.
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Definition 2.9. Let A be an n × n matrix. If there exists another n × n matrix B such that
AB = BA = I, then A is invertible, and B is called the inverse matrix of A. We denote B by A−1.

Theorem 2.10. Let A = (aij) be an n× n invertible matrix. Define

Aij = (−1)i+j detMij ,

where Mij is the (n − 1) × (n − 1) matrix obtained by removing the ith row and jth column of A.
Then

A−1 =
1

detA


A11 A21 · · · An1
A12 A22 · · · An2

...
...

. . .
...

A1n A2n · · · Ann

 .
(Note the arrangements of Aij in A.) In particular, the inverse of A is unique.

Proof. Computation.

Example 2.11. Let us consider the system AX =
#»

b given explicitly by 2 −1 3
−3 1 0
−2 1 4

x1x2
x3

 =

2
0
3

 .
One computes detA = −7, so the system has a unique solution X = A−1

#»

b . By the theorem above

A−1 = −1

7

 4 7 −3
12 14 −9
−1 0 −1

 ,
so x1x2

x3

 = −1

7

 4 7 −3
12 14 −9
−1 0 −1

2
0
3

 =

1/7
3/7
5/7

 .
2.3 More Determinant Facts

Proposition 2.12. Let A and B be n× n matrices.
• det(cA) = cn detA.
• detAt = detA, where At is the transpose of A obtained by writing the rows as columns.
• det(AB) = det(A) det(B).
• If A is invertible, then det(A−1) = (detA)−1.
• detA remains the same after adding or subtracting rows (or columns) with each other.

Proof. Computation.

Proposition 2.13. The following are equivalent for an n× n matrix A.
(a) A is invertible.
(b) detA 6= 0.
(c) rankA = n.

Proof. Statements (b) and (c) are equivalent by the last assertion in the above proposition. State-
ments (a) and (b) are equivalent by the third assertion and Theorem 2.10.
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Example 2.14. It is an exercise on row reduction to see that the determinant of the Vandermonde
matrix 

1 a1 a21 · · · an−11

1 a2 a22 · · · an−12
...

...
...

. . .
...

1 an a2n · · · an−1n


is ∏

1≤i<j≤n
(aj − ai).

We have now come to the most important theorem of this lecture.

Theorem 2.15. Consider a system of linear equations AX =
#»

b .
• If detA 6= 0, then there is a unique solution for X given by X = A−1

#»

b .
• If detA = 0, then there are either zero or infinitely many solutions for

#»

b . There is no solution

if, after performing RREF on
[
A| #»

b
]
, the last nonzero row is of the form

[ 0 · · · 0 γ ], γ 6= 0;

otherwise, there are infinitely many solutions.

Proof. This is a consolidation of everything said in this lecture.

To end this lecture we present another method to find the solution of AX =
#»

b if A is invertible.

Theorem 2.16 (Cramer’s Rule). Consider a system of linear equations AX =
#»

b where A is an
n× n invertible matrix. Then

xi =
detAi
detA

,

where Ai is the matrix A with the ith column replaced by
#»

b .

Proof. Computation.

Example 2.17. We now solve  2 −1 3
−3 1 0
−2 1 4

x1x2
x3

 =

2
0
3

 .
using Cramer’s Rule. One has detA = −7, and

detA1 = det

2 −1 3
0 1 0
3 1 4

 = −1,

and similarly detA2 = −3 and detA3 = −5. Hence the computation agrees with Example 2.11.
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3 Lecture 3 – Linear Maps

In this lecture we focus on understanding what a linear map is. In particular, we want to say that
a matrix is the same as a linear map, up to change of basis. Always let F be either R or C, and let
Fn be the standard n-dimensional space over F .

3.1 Basis

We all know that the dimension of Fn is n. What does this mean exactly? Mathematically speaking,
this means that we can pick n vectors v1, . . . , vn such that any point of Fn can be reached by some
linear combination of these vectors. Let us make this precise.

Definition 3.1. A set of vectors v1, . . . , vm of Fn:
• is linearly independent if c1v1 + · · ·+ cmvm = 0 implies c1 = · · · = cm = 0;
• spans Fn if any vector v ∈ Fn can be written as v = a1v1+· · ·+amvm for some a1, . . . , am ∈ F ;
• is a basis if v1, . . . , vm is linearly independent and spans Fn.

One can check linear independence and spanning as follows. Write v1, . . . , vm as an m×n matrix,
where the ith row corresponds to vi. Then perform REF (corresponding to adding, subtracting,
and scaling vectors). The set:
• is linearly independent if the number of pivots equals m, and is linearly dependent otherwise;
• spans Fn if the number of pivots equals n, and does not span otherwise.

Thus, for v1, . . . , vm to be:
• linearly independent, necessarily m ≤ n;
• spanning, necessarily m ≥ n;
• a basis for Fn, necessarily m = n.

Of course, comparing m and n is not sufficient; we need to do REF computations.

Example 3.2. The standard basis is the basis e1, . . . , en of Fn, where ei is the vector with 1 in
the ith coordinate and 0 elsewhere.

Example 3.3. One can use REF to check that (1, 2, 3), (1, 3, 2), (2, 1, 3) is a basis for F 3.

3.2 Matrix Representation of Linear Maps

Definition 3.4. A function ϕ : Fm −→ Fn is a linear map if

ϕ(c #»v + #»w) = cϕ( #»v ) + ϕ( #»w)

for any constant c ∈ F and any vector #»v , #»w ∈ Fm.

Example 3.5. The function ϕ : F 2−→F by ϕ(x, y) = x+ 2y is a linear map.

Example 3.6. If A is an n × m matrix with coefficients in F , then the function ϕ : Fm−→Fn

defined by ϕ( #»v ) = A #»v is a linear map.

Example 3.7. A rule of thumb to see if a function is linear is to check if the coordinates defining
the function is a linear function without constants. A function with constants or other nontrivial
functions in them are not linear. For example, the functions

R −→ R
x 7−→ x+ 1

R2 −→ R4

(x, y) 7−→ (ex, y, x, xy2 + x)

are not linear maps.
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Given any linear map, we can construct a matrix associated to it.

Definition 3.8. Let ϕ : Fm −→ Fn be a linear map. The standard matrix for ϕ is the n × m
matrix A such that ϕ(vi) = Avi for all i.

Computing the standard matrix for ϕ is relatively simple. Let e1, . . . , em be the standard basis
for Fm. For each ei, write

ϕ(ei) = a1ie1 + · · ·+ anien.

Then the standard matrix for Fn is the matrixa11 · · · a1m
...

. . .
...

an1 · · · anm

 .
Example 3.9. The standard matrix associated to the linear map in Example 3.5 is[

1 2
]
.

It is important to write down the matrix with respect to different bases as well.

Definition 3.10. Let v1, . . . , vm be a basis for Fm, and let w1, . . . , wn be a basis for Fn. The
matrix for ϕ with respect to these bases is the n×m matrix A = (aij) such that

ϕ(vj) = a1jw1 + · · ·+ anjwn

for all j.

Again, after fixing bases, computing the matrix for ϕ is relatively simple: write

ϕ(vj) = a1jw1 + · · ·+ anjwn

for all j. Then the matrix we want is a11 · · · a1m
...

. . .
...

an1 · · · anm

 .
Example 3.11. Let us consider the basis (1, 1), (1, 0) for F 2 and 2 for F . Then, using the linear
map in Example 3.5,

ϕ(1, 1) = 3 =
3

2
· 2,

ϕ(1, 0) = 1 =
1

2
· 2,

so the matrix of ϕ with respect to these bases is[
3/2 1/2

]
.

One last thing to mention about matrix representations is the matrix for map composition.

Definition 3.12. Let A = (aij) and B = (bi′j′) be two n × n matrices. Then the product AB is
the n× n matrix with (i, j)th entry

ai1b1j + ai2b2j + · · ·+ ainbnj .
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Remark. Consider

A =

[
0 1
0 0

]
, B =

[
1 0
0 0

]
.

Then

AB =

[
0 0
0 0

]
, BA =

[
0 1
0 0

]
,

so matrices do not commute in general. In fact, matrices do not every satisfy the property AB = AC
implies B = C. An example is

C =

[
0 0
0 0

]
, AC =

[
0 0
0 0

]
.

Proposition 3.13. Fix Fn, Fm, F l, their bases, and linear maps ϕ : Fn −→ Fm and ψ : Fm −→
F l. If A and B corresponds to the matrices of the respective maps, then the matrix of their com-
position ψ ◦ ϕ : Fn −→ F l is BA.

Proof. Computation.

3.3 Change of Basis

Earlier we mentioned that there are many different choice of basis for Fn. Suppose v1, . . . , vn and
v′1, . . . , v

′
n are two such bases. Can we construct an n × n matrix A such that Avi = v′i for all i?

Equivalently, we write to write down the matrix of the linear map f : Fn −→ Fn defined by

f(a1v1 + · · ·+ anvn) = a1v
′
1 + · · ·+ anv

′
n,

where we fixed the basis v1, . . . , vn on both sides. How do we construct this matrix, called the
change of basis matrix? We use the same method as before.
• For each i, write down v′i as a linear combinations of the v1, . . . , vn, i.e.

v′i = a1iv1 + · · ·+ anivn.

• The matrix we want is then a11 · · · a1n
...

. . .
...

an1 · · · ann

 .
Example 3.14. To compute the change of basis matrix from (1, 2), (3, 1) to e1, e2, we observe that

e1 = −1

5
· (1, 2) +

2

5
· (3, 1),

e2 =
3

5
· (1, 2)− 1

5
· (3, 1).

Hence the matrix we want is [
−1/5 3/5
2/5 −1/5

]
.

Clearly every change of basis matrix is invertible, for we can easily construct its inverse linear
map. We now have the following corollary.
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Corollary 3.15. Let ϕ : Fn −→ Fn be a linear map, and let B and B′ be two bases of Fn. Suppose
A is the matrix of ϕ corresponding to the bases B and B. If B is the change of basis matrix from
B to B′, then:

(a) the matrix of ϕ corresponding to the bases B and B′ is B−1A;
(b) the matrix of ϕ corresponding to the bases B′ and B′ is B−1AB.

Proof. Use Proposition 3.13.

3.4 Subspaces and the Rank-Nullity Theorem

We now discuss the Rank-Nullity Theorem, which is useful for future computations. Before that,
we need to defined what a subspace is.

Definition 3.16. A subspace of Fn is a subset W of Fn such that cw1+w2 ∈W for all w1, w2 ∈W
and c ∈ F . (That is, W is closed under addition and scalar multiplication.)

Definition 3.17. Let ϕ : Fn −→ Fn be a linear map, and let W be a subspace for Fn. We say
that Fm is an invariant subspace if ϕ(w) ∈W for all w ∈W . If A is the matrix of ϕ (with respect
to fixed bases), this is equivalent to saying that Aw ∈W for all w ∈W .

Example 3.18. Consider the two subset of F 3 defined by

{(x, y, z) ∈ F 3 : x+ 2y + z = 0}, {(x, y, z) ∈ F 3 : x+ 2y + z = 1}.

The first one is a subspace, but not the second one. Let us call this subspace W . Then it is clear
that W is two-dimensional (two free variables), and a basis for W is (1, 0,−1), (1,−1, 1).

Example 3.19 (Kernel and Image). Let ϕ : Fm −→ Fn be a linear map. Define the kernel and
image of ϕ to be

kerϕ = {v ∈ Fm : ϕ(v) = 0},
imϕ = {ϕ(v) : v ∈ Fm}.

These are invariant subspaces of Fm and Fn. If we use the language of matrices, then the kernel
and image of an n×m matrix A are

kerA = {v ∈ Fm : Av = 0},
imA = {Av : v ∈ Fm}.

The nullity nullA and rank rankA of A is defined to be dim kerA and dim imA respectively. By
observation or doing REF, rankA equals the number of pivots of A.

Example 3.20. By performing REF, the matrix
1 3 2 0 1
−1 −1 −1 1 0
0 4 2 4 3
1 3 2 −2 0


has rank 3 and nullity 2.
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Theorem 3.21 (Rank-Nullity). Let ϕ : Fm −→ Fn be a linear map. Then

dim kerϕ+ dim imϕ = m.

In the language of matrices, if A is an n×m matrix, then

nullA+ rankA = m.

Proof. This is easy to see by doing REF on A. One can also prove it using abstract linear algebra,
which we will not do here.

Proposition 3.22. Let ϕ : Fm −→ Fn be a linear map. If ϕ is bijective, then m = n. Furthermore,
the following are equivalent.

(a) ϕ is bijective.
(b) kerϕ = {0}.
(c) ϕ is injective.
(d) ϕ is surjective.

Proof. If ϕ is bijective, then kerϕ = {0} necessarily. By the Rank-Nullity Theorem dim imϕ = m.
But by bijectivity imϕ = Fn, so m = n necessarily.

Now we show the equivalences. (a) ⇒ (b) is clear. For (b) ⇒ (c), if kerϕ = {0}, then
ϕ(v) = ϕ(w) implies ϕ(v − w) = 0, so v − w ∈ kerϕ and v − w = 0, implying injectivity. For
(c)⇒ (d), if ϕ is injective, then kerϕ = {0}, so dim imϕ = n. But this implies imϕ is a subset of
Fn of the same dimension, so imϕ = Fn, implying surjectivity. For (d) ⇒ (a), the Rank-Nullity
Theorem tells us that dim kerϕ = 0, so kerϕ = {0} necessarily, implying injectivity, and together
with surjectivity gives bijectivity.

The proposition above gives the following corollary. This corollary tells us that, although
matrices do not commute in general, an invertible matrix and its inverse do.

Corollary 3.23. Let A and B be two n× n matrices. If AB = I then BA = I.

Proof. Since A is an invertible matrix, kerA = {0}. Consider the matrix I − BA. Note that
A(I − BA) = 0. If I − BA were nonzero, then there exists a vector v such that (I − BA)v 6= 0.
This would imply A(I −BA)v 6= 0 since kerA is trivial, a contradiction.

3.5 An Overview of Abstract Vector Spaces

In general, one can give a notion of an abstract vector space V over F and show that every such V
is isomorphic to Fn for some n. We will not dwell on the precise definition here, but we will just
say the following. A vector space over F is a set V , together with addition and scalar multiplication
satisfying some obvious axioms. A subspace of V is a subset W such that cw1 + w2 ∈W for every
w1, w2 ∈W and c ∈ F .

In this course our vector space V will almost always be one of the following:
• a set of nice functions Rn −→ R, or
• the set of polynomials Pn of degree at most n with coefficients in R.

The subspace W will almost always be the functions of V satisfying some linear ODE. (One can
check that this is indeed a subspace.)

If U and V are two vector spaces, a linear map ϕ : U −→ V is still defined to be a function
satisfying ϕ(cu1 + u2) = cϕ(u1) + ϕ(u2) for any constant c ∈ F and any vector u1, u2 ∈ U . In our
course, a linear map is a map defined almost exclusively by a linear ODE. We use the same method
as before to construct the matrix associated to a linear map.

19



Example 3.24. Let S be the space of real polynomials of the form ax3 + bx, and consider the
linear map ϕ : S −→ R2 defined by

ϕ(ax3 + bx) = (a, a+ b).

Pick bases x, x3 and (1, 0), (0, 1). Then

ϕ(x) = (0, 1) = 0 · (1, 0) + 1 · (0, 1),

ϕ(x3) = (1, 1) = 1 · (1, 0) + 1 · (0, 1).

Thus the matrix of ϕ is [
0 1
1 1

]
.

Example 3.25. Consider the linear map ϕ : P2 −→ R defined by ϕ(p) = p(1), or in other words

ϕ(ax2 + bx+ c) = a+ b+ c.

Since the dimensions of P2 and R are 3 and 1 respectively, the matrix of ϕ should be 1× 3. With
respect to the bases 1, x, x2 and 1, it is [

1 1 1
]
.

Example 3.26. Let M2(R) be the space of 2× 2 real matrices. The map ϕ : M2(R) −→ R defined
by ϕ(A) = det(A) is not a linear map, for det(A+B) 6= det(A) + det(B) in general.

Example 3.27. Consider the linear map ϕ : P2 −→ P2 defined by ϕ(p) = 2p′′ + (x − 1)p, or in
other words

ϕ(ax2 + bx+ c) = 4a− b+ (b− 2a)x+ 2ax2.

With respect to the basis 1, x, x2,

ϕ(1) = 0,

ϕ(x) = −1 + x,

ϕ(x2) = 4− 2x+ 2x2.

Thus the matrix of ϕ is 0 −1 4
0 1 −2
0 0 2

 .
Example 3.28. Consider the vector space V of real polynomials in two variables x and y of degree
at most two. This vector space is six dimensional, with basis 1, x, y, x2, xy, y2. Let us consider the
linear map ϕ : V −→ V by

T (p(x, y)) = y
∂p

∂x
+ x

∂p

∂y
.

A computation tells us that the matrix of ϕ with respect to this basis is

0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 2 0 2
0 0 0 0 1 0

 .
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4 Lecture 4 – Eigenvalues and Eigenvectors

We introduce the most important part of linear algebra for this course, that is, eigenvalues and
eigenvectors. We will see later that half of this course is about knowing how to compute these
things. Throughout this lecture A is an n× n real matrix.

4.1 Eigenvalues and Eigenvectors

Definition 4.1. The characteristic polynomial of A is det(xI−A). An eigenvalue of A is a solution
λ to det(xI−A) = 0. The multiplicity of λ is the maximum positive integer mλ such that (x−λ)mλ

divides det(A−xI). An eigenvector for an eigenvalue λ of A is a nonzero element of ker(A−λI), or
equivalently a nonzero solution to A #»x = λ #»x . The vector space ker(A−λI) is called the eigenspace
for λ.

Example 4.2. Consider the matrix

A =

 2 0 0
1 2 1
−1 0 1

 .
A computation tells us that

det(xI −A) = (x− 1)(x− 2)2

so A has eigenvalues λ1 = 1 and λ2 = 2, of multiplicities mλ1 = 1 and mλ2 = 2 respectively.
To compute the eigenvectors of λ1, observe that

A− I =

 1 0 0
1 1 1
−1 0 0

 .
Since this matrix has rank 2, the rank-nullity theorem tells us that dim ker(A− I) = 1. By solving
the equation A #»x = #»x , one sees that the eigenspace ker(A− I) is spanned by (0,−1, 1).

Similarly, to compute the eigenvectors of λ2, observe that

A− 2I =

 0 0 0
1 0 1
−1 0 −1

 .
Since this matrix has rank 1, the rank-nullity theorem tells us that dim ker(A − 2I) = 2. By
solving the equation A #»x = 2 #»x , one sees that the eigenspace ker(A − 2I) is spanned by (0, 1, 0)
and (−1, 0, 1).

Example 4.3. Consider the matrix

A =

 2 2 3
1 3 3
−1 −2 −2

 .
A computation tells us that

det(xI −A) = (x− 1)3
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so A has a unique eigenvalue λ = 1 of multiplicity mλ = 3. To compute the eigenvectors of λ,
observe that

A− I =

 1 2 3
1 2 3
−1 −2 −3


has rank 1. Thus dim ker(A − I) = 2. Solving the equation A #»x = #»x tells us that the eigenspace
ker(A− I) is spanned by (1, 1,−1) and (2,−1, 0).

Example 4.4. The eigenvalues of [
−2 −5
4 2

]
are 4i and −4i, and the eigenspaces are spanned by (−1 + 2i, 2) and (−1− 2i, 2) respectively.

The above example illustrates a property of conjugate eigenvalues pairs.

Proposition 4.5. If λ is an eigenvalue of A, then so is λ. If #»v is an eigenvector of λ, then c( #»v )
is an eigenvector of λ, where c( #»v ) is the vector #»v with all entries conjugated.

Proof. Since det(xI −A) is a polynomial with real coefficients, complex roots must occur in pairs.
If A #»v = λ #»v , then c(A #»v ) = c(λ #»v ). But c(A) = A since A is a real matrix.

Notice that there is an eigenvalue to every eigenvector by the following proposition.

Proposition 4.6. There exists a nonzero solution to A #»x = 0 iff detA = 0.

Proof. If there is a nonzero solution, then detA = 0. If detA = 0, then rankA < n so kerA > 0.

Proposition 4.7. Eigenvectors for distinct eigenvalues are linearly independent. More precisely,
let λ1, . . . , λn be pairwise distinct eigenvalues for a matrix A, and let vi be a chosen eigenvector for
λi. Then v1, . . . , vn are linearly independent.

Proof. Let us proceed by induction. Suppose a1v1 + a2v2 = 0. Applying A gives us

a1λ1v1 + a2λ2v2 = 0.

On the other hand, multiplying throughout by λ1 gives us

a1λ1v1 + a2λ1v2 = 0.

Therefore
a2(λ1 − λ2)v2 = 0,

implying a2 = 0 since λ1 − λ2 6= 0 and v2 6= 0. This tells us that a1v1 = 0, implying a1 = 0.
Let us now suppose a1v1 + · · ·+ anvn = 0. Applying A, or multiplying by λn, gives us

a1λ1v1 + · · ·+ anλnvn = 0,

a1λnv1 + · · ·+ anλnvn = 0.

Therefore
a1(λ1 − λn)v1 + · · ·+ an−1(λ1 − λn)vn−1 = 0

implying a1 = · · · = an−1 = 0 by induction. This implies anvn = 0, giving an = 0 as well.
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Example 4.8. If A has n distinct eigenvalues, then the proposition tells us that A has a basis
consisting of eigenvectors, with each eigenvector corresponding to a distinct eigenvalue. Example
4.4 gives an example of such a matrix.

Let us say briefly why we care about eigenvalues and eigenvectors. Let’s say we want to solve
the differential equation

#»x ′(t) = A #»x(t)

with some initial condition #»x0. We will see later that the unique solution is

#»x(t) = etA #»x0,

where the matrix exponential will be defined in the next lecture. Thus we know the solution
explicitly in principle since A and #»x0 are given to us. However, the exponential factor is hard
to compute directly. If A has a basis consisting of eigenvectors, the theory of eigenvectors and
eigenvalues helps us to write A = SDS−1 with D diagonal and S a change of basis matrix, whence

etA = SetDS−1

and etD is easy to compute.

Definition 4.9. We say A is diagonalizable if it has a basis consisting of eigenvectors. Otherwise,
A is defective.

Hence in order to check if an n × n matrix is diagonalizable we compute the eigenvalues and
find a maximal set of linearly independent eigenvectors for each eigenvalue. If we get a total of n
linearly independent eigenvectors among all eigenvalues, then our matrix is diagonalizable.

Proposition 4.10. If A is diagonalizable, then A = SDS−1 for some diagonal matrix D.

Proof. This follows immediately as a consequence of our discussion on change of basis.

It is important to know a method for decomposing diagonalizable matrices A into SDS−1. The
method is hidden in the various propositions above, and we flesh it out below.
• Compute the eigenvalues for an n× n matrix A by finding the roots of det(xI −A).
• For each eigenvalue λ, find a maximal set of linearly independent vectors for ker(A− λI).
• If we get n such vectors v1, . . . , vn in the previous step among all the eigenvalues of A, then
A is diagonalizable. If vi is associated to the eigenvalue λi, then

S =
[
v1 v2 · · · vn

]
, D =


λ1 0 0 0
0 λ2 0 0

0 0
. . . 0

0 0 λn

 .
Example 4.11. We saw in Example 4.2 that the matrix 2 0 0

1 2 1
−1 0 1


has
• eigenvalue 1 with associated eigenvector (0,−1, 1), and
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• eigenvalue 2 with associated eigenvectors (0, 1, 0) and (−1, 0, 1).
Thus, by the method outlined above, 2 0 0

1 2 1
−1 0 1

 =

 0 0 −1
−1 1 0
1 0 1

1 0 0
0 2 0
0 0 2

 0 0 −1
−1 1 0
1 0 1

−1 .
The inverse matrix above can be computed using the adjunct formula, and 0 0 −1

−1 1 0
1 0 1

−1 =

 1 0 1
1 1 1
−1 0 0

 .
We will work out more examples of this in Lecture 6. Let us note for now that defective matrices

are never diagonalizable (an example is the matrix in Example 4.3). However, we will see later that
one can always write A = SJS−1 in Jordan Canonical Form, and such that

etA = SetJS−1,

with J being a special kind of upper-triangular matrix, and etJ easy to compute.

4.2 The Cayley-Hamilton Theorem

Let us end this lecture with an important theorem summarizing the concepts we have learnt in the
past three lectures.

Theorem 4.12 (Cayley-Hamilton). A satisfies the polynomial equation det(xI −A) = 0.

Proof. By viewing A = (aij) as a linear map ϕ : Rn−→Rn with respect to some basis b1, . . . , bn,
one sees that

ϕ(bi) =

n∑
j=1

aijbj .

Hence, replacing ϕ by the indeterminate x, and writing b = (b1, . . . , bn) one sees that

(xI −A)b = 0.

Multiplying by the adjunct of xI −A on the left, one has

det(xI −A)b = 0,

so det(xI −A) maps every bi to 0. Hence det(xI −A) has full nullity and zero rank.

One can check that all the matrices we have wrote down in this lecture satisfies the Cayley-
Hamilton Theorem. An application of the Cayley-Hamilton Theorem is a method to compute the
inverse of an invertible matrix that avoids anything to do with minors.

Corollary 4.13. Let A be an invertible matrix, and write

det(xI −A) = xn + an−1x
n−1 + · · ·+ a0.

Then a0 6= 0, and

A−1 = − 1

a0
(An−1 + an−1A

n−2 + · · ·+ a1I).
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Proof. If a0 = 0 then A has zero as an eigenvalue, so detA = 0 by proposition 4.6, a contradiction.
Now, by Cayley-Hamilton

An + an−1A
n−1 + · · ·+ a0I = 0.

The corollary now follows by manipulation.

Example 4.14. Let us use Cayley-Hamilton to compute the inverse of

A =

 0 0 −1
−1 1 0
1 0 1

 .
The characteristic polynomial of A is

det(xI −A) = x3 − 2x2 + 2x− 1,

so by the corollary above
A−1 = A2 − 2A+ 2I.

One can check that the computation agrees with Example 4.11.
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5 Lecture 5 – Matrix Exponentials

Throughout this lecture A is an n×n real matrix. We explained last lecture why the matrix expo-
nential is important in solving multidimensional linear first order ODEs with constant coefficients,
but we have not even said what it is.

5.1 Definition and Example Computations

Definition 5.1. The matrix exponential of A is defined to be the convergent infinite power series

eA =
∞∑
j=0

1

j!
Aj = I +A+

1

2!
A2 + · · · .

Certainly this definition is motivated from the Taylor series expansion of the one-dimensional
exponential function about 0. A direct computation tells us that

d

dt
etA = AetA, etAe−tA = e−tAetA = I.

However, it is important to note that in general

eA+B 6= eAeB.

After expanding both sides out using the definition, one sees that the reason is because we do not
have AB = BA.

Example 5.2. Here is an example illustrating the above non-equality. Let

A =

[
0 1
0 0

]
, B =

[
1 0
0 0

]
.

Then

eA+B =

[
e e− 1
0 1

]
, eAeB =

[
1 1
0 1

] [
e 0
0 1

]
=

[
e 1
0 1

]
.

Proposition 5.3. If A and B are two commuting n× n matrices, so that AB = BA, then

eA+B = eAeB.

Proof. Computation.

It is very hard to compute the matrix exponential of a general square matrix directly. In
principle the following proposition allows us to compute the matrix exponential of any matrix.

Proposition 5.4. Let A be an n× n matrix.
(a) If Ak = 0, then

eA =

∞∑
j=k

1

j!
Aj = I +A+

1

2!
A2 + · · ·+ 1

(k − 1)!
Ak−1.

(b) If A = A1 ⊕ · · · ⊕Ak is a block diagonal matrix, then

eA = eA1 ⊕ · · · ⊕ eAk .
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(c) If

A =



λ 1 0 0 · · · 0
0 λ 1 0 · · · 0
...

...
. . .

. . .
...

...
0 · · · 0 λ 1 0
0 0 · · · 0 λ 1
0 0 0 · · · 0 λ


is a Jordan block, then

etA =



eλt teλt t2

2!e
λt t3

3!e
λt · · · tn−1

(n−1)!e
λt

0 eλt teλt t
2!e

λt . . .
...

...
...

. . .
. . .

... t3

3!e
λt

0 · · · 0 eλt teλt t2

2!e
λt

0 0 · · · 0 eλt teλt

0 0 0 · · · 0 eλt


.

(d) If A = SJS−1, then etA = SetJS−1.

Proof. Computation.

Example 5.5. One observes that the matrix A below can be factored as 2 2 3
1 3 3
−1 −2 −2

 =

−2 3 0
1 3 0
0 −3 1

1 0 0
0 1 1
0 0 1

−2 3 0
1 3 0
0 −3 1

−1 .
This is an example of a Jordan Canonical Form of a matrix, which we will learn how to compute
in Lecture 7. Right now we are just interested to know etA, which is

etA =

−2 3 0
1 3 0
0 −3 1

et 0 0
0 et tet

0 0 et

−2 3 0
1 3 0
0 −3 1

−1

=

(t+ 1)et 2tet 3tet

tet (2t+ 1)et 3tet

−tet −2tet (1− 3t)et

 .
Example 5.6. By computing out eigenvalues and eigenvectors as described in the previous lecture,
we see that the matrix A below can be written as 2 0 0

1 2 1
−1 0 1

 =

 0 0 −1
−1 1 0
1 0 1

1 0 0
0 2 0
0 0 2

 0 0 −1
−1 1 0
1 0 1

−1 .
Therefore

eA =

 0 0 −1
−1 1 0
1 0 1

e 0 0
0 e2 0
0 0 e2

 0 0 −1
−1 1 0
1 0 1

−1

=

 e2 0 0
e2 − e e2 e2 − e
e− e2 0 e

 .
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5.2 Analytic Function on Matrices

The exponential function is an example of an analytic function. In general one can compute the
result of a Jordan block after applying an analytic function on it.

Proposition 5.7. Let f be an analytic function. If

A =



λ 1 0 0 · · · 0
0 λ 1 0 · · · 0
...

...
. . .

. . .
...

...
0 · · · 0 λ 1 0
0 0 · · · 0 λ 1
0 0 0 · · · 0 λ


is a Jordan block, then

f(A) =



f(λ) f ′(λ) 1
2!f
′′(λ) 1

3!f
′′′(λ) · · · 1

(n−1)!f
(n−1)(λ)

0 f(λ) f ′(λ) 1
2!f
′′(λ)

. . .
...

...
...

. . .
. . .

... 1
3!f
′′′(λ)

0 · · · 0 f(λ) f ′(λ) 1
2!f
′′(λ)

0 0 · · · 0 f(λ) f ′(λ)
0 0 0 · · · 0 f(λ)


.

Proof. Computation.

Example 5.8. Consider the analytic function f(x) = xk. Then, for 0 ≤ m ≤ k,

1

m!
f (m)(x) =

k(k − 1) · · · (k −m+ 1)

m!
xk−m =

(
k
m

)
xk−m.

Hence, if

A =



λ 1 0 0 · · · 0
0 λ 1 0 · · · 0
...

...
. . .

. . .
...

...
0 · · · 0 λ 1 0
0 0 · · · 0 λ 1
0 0 0 · · · 0 λ


is a Jordan block, then

Ak =



λk kλk−1
(
k
2

)
λk−2

(
k
3

)
λk−3 · · ·

(
k

n− 1

)
λk−n+1

0 λk kλk−1
(
k
2

)
λk−2

. . .
...

...
...

. . .
. . .

...

(
k
3

)
λk−3

0 · · · 0 λk kλk−1
(
k
2

)
λk−2

0 0 · · · 0 λk kλk−1

0 0 0 · · · 0 λk


,

where we set

(
k
l

)
= 0 if l > k.
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5.3 Nilpotent Matrices and Exponentiation

Consider an n× n matrix A with exactly one eigenvalue λ, i.e.

det(A− xI) = (−1)n(x− λ)n.

The Cayley-Hamilton Theorem then implies A− λI = N for some matrix N satisfying Nn = 0.

Definition 5.9. A nilpotent matrix is a square matrix N such that Nn = 0 for some n.

It is easy to compute powers and exponentials of matrices with exactly one eigenvalue without
using the exponential formula discussed earlier on.

Proposition 5.10. Suppose A is an n× n matrix with exactly one eigenvalue λ. Then

Ak =

max{k,n}∑
j=0

(
k
j

)
λk−j(A− λI)j .

Proof. The Cayley-Hamilton Theorem implies (A− λI)n = 0. Since λI and A− λI commutes,

Ak = (λI +A− λI)k =

max{k,n}∑
j=0

(
k
j

)
λk−j(A− λI)j ,

as desired.

Proposition 5.11. Suppose A is an n× n matrix with exactly one eigenvalue λ. Then

etA = etλ
n−1∑
j=0

1

j!
(A− λjI)jtj .

Proof. The Cayley-Hamilton Theorem implies (A− λI)n = 0. Since λI and A− λI commutes,

etA = etλIet(A−λI) = etλ
n−1∑
j=0

1

j!
(A− λjI)jtj ,

as desired.

Example 5.12. Consider the matrix

A =

[
4 −3
3 −2

]
with exactly one eigenvalue 1. One computes (A− I)2 = 0, so

A2019 = I + 2019(A− I) =

[
6058 −6057
6057 −6056

]
etA = et(I + t(A− I)) =

[
(3t+ 1)et −3tet

3tet (−3t+ 1)et

]
.
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6 Lecture 6 – First Order Constant Linear ODEs Part 1

This lecture is a review of diagonalizable matrices.

6.1 The General Solution

In the next three lectures we focus our attention to solving ODEs of the form

#»x ′(t) = A #»x(t), #»x(t0) = #»x0 .

This is the multidimensional version of the first order linear ODE that we saw in Lecture 1. By
using the same proof over there, the solution to this differential equation has the same form.

Proposition 6.1. The solution to the differential equation

#»x ′(t) = A #»x(t), #»x(t0) = #»x0 .

is #»x(t) = e(t−t0)A #»x0.

Proof. Since the derivative of e−tA is −Ae−tA, the above equation is equivalent to

d

dt

(
e−tA #»x(t)

)
= 0.

By integrating both sides from t0 to t and solving for the constant, we arrive at our conclusion.

Hence the only difficulty of solving an ODE of this type is computing the exponential matrix
etA. We recall how to do it via examples for diagonalizable matrices A below, and leave the general
case to the next lecture.

6.2 Examples on Diagonalizable Matrices

We demonstrate the method written out in Lecture 4 via two examples. The first one should be
pretty straightforward, and the second one is slightly more complicated involving complex numbers.

Example 6.2. Consider the matrix

A =

[
6 −1
2 3

]
.

Let us try to find a formula for Ak and eA. The matrix A has
• eigenvalue 5 with eigenvector (1, 1),
• eigenvalue 4 with eigenvector (1, 2),

so A = SDS−1 where

S =

[
1 1
1 2

]
, D =

[
5 0
0 4

]
, S−1 =

[
2 −1
−1 1

]
.

This means that

Ak = SDkS−1 =

[
1 1
1 2

] [
5k 0
0 4k

] [
2 −1
−1 1

]
=

[
2 · 5k − 4k −5k + 4k

2 · 5k − 2 · 4k −5k + 2 · 4k
]
,

eA = SeDS−1 =

[
1 1
1 2

] [
e5 0
0 e4

] [
2 −1
−1 1

]
=

[
2e5 − e4 −e5 + e4

2e5 − 2e4 −e5 + 2e4

]
.
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Example 6.3. Consider the matrix

A =


2 9 0 2
−1 2 1 0
0 0 3 0
0 0 1 −1

 .
Again let us try to find formulas for Ak and eA. The matrix A has
• eigenvalue 3 with eigenvector (19, 1, 20, 5),
• eigenvalue −1 with eigenvector (3, 1, 0,−9),
• eigenvalue 2 + 3i with eigenvector (−3i, 1, 0, 0),
• eigenvalue 2− 3i with eigenvector (3i, 1, 0, 0).

Thus A = SDS−1 where

S =


19 3 −3i 3i
1 1 1 1
20 0 0 0
5 −9 0 0

 , D =


3 0 0 0
0 −1 0 0
0 0 2 + 3i 0
0 0 0 2− 3i

 .
We explain how to compute Dk and eD, leaving the computation of S−1, Ak, and eA as an exercise.
Note that

Dk =


3k 0 0 0
0 (−1)k 0 0
0 0 (2 + 3i)k 0
0 0 0 (2− 3i)k

 .
To compute (2 + 3i)k we use polar coordinates: observe that

2 + 3i =
√

13eiθ, θ = arctan
3

2
.

Hence
(2 + 3i)k = (

√
13)keikθ = 13k/2 cos(kθ) + 13k/2i sin(kθ).

Similarly
(2− 3i)k = 13k/2 cos(kθ)− 13k/2i sin(kθ).

Next

eD =


e3 0 0 0
0 e−1 0 0
0 0 e2+3i 0
0 0 0 e2−3i

 ,
and one observes that

e2+3i = e2 cos(3) + ie2 sin(3), e2−3i = e2 cos(3)− ie2 sin(3).

6.3 Duhamel’s Formula

There are many situations where we are tasked with solving an equation of the form

#»x ′(t) = A #»x(t) + #»g (t), #»x(t0) = #»x0 .

instead, and we will see plenty of examples after the midterm. Fortunately we still have a simple
formula to compute the solution to this equation.
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Proposition 6.4. The solution to the differential equation

#»x ′(t) = A #»x(t) + #»g (t), #»x(t0) = #»x0 .

is
#»x(t) = e(t−t0)A #»x0 +etA

∫ t

t0

e−sA #»g (s) ds,

where the integration sign means to integrate each entry of e−sA #»g (s) independently.

Proof. Observe that the differential equation is equivalent to

d

dt

(
e−tA #»x(t)

)
= e−tA #»g (t),

and proceed as before.

Example 6.5. Let us compute

#»x ′(t) = A #»x(t) + (1, t), #»x(0) = (0, 0),

where

A =

[
6 −1
2 3

]
.

is the matrix in Example 6.2. The solution is

#»x(t) = etA(0, 0) + etA
∫ t

0
e−sA(1, s) ds = etA

∫ t

0
e−sA(1, s) ds.

A previous computation tells us that

etA =

[
2e5t − e4t −e5t + e4t

2e5t − 2e4t −e5t + 2e4t

]
,

and so

e−sA(1, s) =

[
2e−5s − e−4s −e−5s + e−4s

2e−5s − 2e−4s −e−5s + 2e−4s

] [
1
s

]
=

[
2e−5s − e−4s − se−5s + se−4s

2e−5s − 2e−4s − se−5s + 2se−4s

]
.

Integrating, ∫ t

0
e−sA(1, s) ds =

[
1
5 te
−5t − 9

25e
−5t − 1

4 te
−4t + 3

16e
−4t + 69

400
1
5 te
−5t − 9

25e
−5t − 1

2 te
−4t + 3

8e
−4t − 3

200

]
,

and #»x(t) equals the product of etA and the above matrix.
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7 Lecture 7 – First Order Constant Linear ODEs Part 2

In this lecture we discuss how to do a change of basis on defective matrices suitably so that one can
imitate the computations done in the previous lecture. This decomposition is usually called the
Jordan Canonical Form of the matrix. Throughout this lecture A will be an n × n matrix, which
we view as an endomorphism A : V −→ V of a complex vector space V .

7.1 Generalized Eigenvectors

Definition 7.1. Let λ be an eigenvalue of A. A generalized eigenvector of λ is a vector v such that
(A− λI)kv = 0 for some positive integer k. The generalized eigenspace of λ is

Eλ := {v ∈ V : (A− λI)kv = 0 for some positive integer k}.

The goal of this subsection is to show that V can be decomposed into a direct sum of generalized
eigenspaces corresponding to the eigenvalues of A, and to show that each generalized eigenspace
has dimension equal to the multiplicity of its eigenvalue.

Lemma 7.2. Let A : V −→ A be a linear map on a complex n-dimensional vector space V .
(a) After a change of basis, A can be written as an upper triangular matrix.
(b) If kerAl = kerAl+1, then kerAl+d = kerAl+1+d for any positive integer d. Also, we must

have kerAn = kerAn+1.
(c) If imAl+1 = imAl, then imAl+1−d = imAl−d for any positive integer d < l. Also, we must

have imAn+1 = imAn.

Proof. (a) Pick an eigenvector vλ of A corresponding to an eigenvalue λ, which exists by the
fundamental theorem of algebra. After completing this to a basis vλ, v1, . . . , vn−1 of A, one sees
that with respect to this basis

A =


λ ∗ · · · ∗
0 ∗ · · · ∗

0
...

. . .
...

0 ∗ · · · ∗

 .
Now repeat this process with the bottom right (n − 1) × (n − 1) matrix, which corresponds to a
linear map on the invariant subspace of V spanned by v1, . . . , vn−1.

(b) Let v ∈ kerAl+1+d. Then Al+1Adv = 0, so Adv ∈ kerAl. Thus v ∈ kerAl+1. If kerAn 6=
kerAn+1, then kerAn ( kerAn+1. By part (b) this implies

kerA ( kerA2 ( · · · kerAn ( kerAn+1,

so dimV ≥ n+ 1, a contradiction.
(c) The proof is analogous to that of part (b) and will not be written here.

Proposition 7.3. Let λ be an eigenvalue of A with multiplicity mλ. Then the dimension of the
generalized eigenspace corresponding to λ equals mλ.

Proof. We proceed by induction on the dimension n of V . The proposition holds trivially if n = 1.
For the inductive step, use the previous lemma to write

A =


λ1 ∗ · · · ∗

0 λ2
. . .

...
...

. . .
. . . ∗

0 · · · 0 λn

 .

33



By definition of the characteristic polynomial the diagonal elements λ1, . . . , λn are exactly the
eigenvalues of A, counted without multiplicity. Let e1, . . . , en be the basis of V with respect to this
upper triangular matrix A, and let U be the invariant subspace spanned by e1, . . . , en−1.

We now fix an eigenvalue λ. Then λ shows up mλ times on the diagonal of A, and we want to
show that

dim ker(A− λI)mλ = mλ.

We now have two cases to consider.
Case 1: λn 6= λ. By the inductive hypothesis, λ shows up exactly mλ times on the diagonal of

A|U , and
dim ker(A− λI)|mλU = mλ.

We want to show that (A − λI)mλv 6= 0 for any v ∈ V \ U , so ker(A − λI)|mλU = (A − λI)mλ ,
completing our claim in this case. But this is clear, for any such v can be written as u + cen for
some u ∈ U and nonzero scalar c, and

(T − λ)mλ(u+ cen) = (T − λ)mλu+ c(λn − λ)mλen

with c(λn − λ)mλ 6= 0.
Case 2: λn = λ. By the inductive hypothesis, λ shows up exactly mλ− 1 times on the diagonal

of A|U , and
dim ker(A− λI)|mλ−1U = mλ − 1.

By the previous lemma one has

dim ker(A− λI)|mλ−1U = dim ker(A− λI)|mλU
and so it suffices to show that

dim ker(A− λI)mλ = dim ker(A− λI)|mλU + 1.

By the inclusion-exclusion principle

dim (U + ker(A− λI)mλ) = dimU + dim(A− λI)mλ − dim (U ∩ ker(A− λI)mλ)

= (n− 1) + dim(A− λI)mλ − dim(A− λI)|mλU ,

so
dim(A− λI)mλ − dim(A− λI)|mλU ≤ 1

as dim (U + ker(A− λI)mλ) ≤ n. Hence it suffices to find a vector of the form u− en with u ∈ U
such that (A− λI)mλ(u− en) = 0. By assumption

Aen = un + λnen

for some un ∈ U , so

(A− λI)mλen = (A− λI)mλ−1un ∈ im(A− λI)|mλ−1U = im(A− λI)|mλU ,

where the last equality is by the previous lemma. Thus (A − λI)mλen = (A − λI)mλu for some
u ∈ U , as desired.

Proposition 7.4. Let λ1, . . . , λj be the eigenvalues of A. Then there is an A-invariant direct sum
decomposition

V = Eλ1 ⊕ · · · ⊕ Eλj .

Proof. It is easy to see that the generalized eigenspaces intersect trivially pairwise, so the right
hand side is a direct sum contained in V . By the previous proposition, dimEλl = mλl , where mλ is
the multiplicity of the eigenvalue λ. Hence the equality is achieved, since n = mλ1 + · · ·+mλj .
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7.2 The Jordan Canonical Form for Nilpotent Matrices

In this subsection we consider a nilpotent matrix A, so that A has zero as the unique eigenvalue.
We want to show that, after a change of basis, one can write

A = A1 ⊕ · · · ⊕Am

where each Ai is a block of the form 
0 1 0 · · · 0

0 0 1
. . .

...
... 0

. . .
. . . 0

0 · · · 0 0 1
0 0 · · · 0 0

 .

Lemma 7.5. Let A be a nilpotent matrix with Ak = 0, and let U be a nonzero subspace of V that
intersects kerAk−1 trivially. Then U +AU + · · ·+Ak−1U is A-invariant, and

V = (U +AU + · · ·+Ak−1U)⊕W

for some A-invariant subspace W .

Proof. The first claim that U +AU + · · ·+Ak−1U is A-invariant is easy, so we omit that and prove
the the second claim. We do induction on k. The case k = 1 is clear. For the induction hypothesis,
let U ′ be a subspace such that

V = U ′ ⊕ U ⊕ kerAk−1,

and write U ′′ = U ′ ⊕ U . By assumption AU ′′ ⊂ kerAk−1. Also AU ′′ ∩ kerAk−2 = {0}, else if
Au′′ ∈ AU ′′ with u′′ 6= 0 satisfies Ak−2Au′′ = 0 then u′′ ∈ kerAk−1, contradicting the direct sum
decomposition of V as above.

Note that Ak−1 = 0 on the A-invariant subspace kerAk−1. By the induction hypothesis

kerAk−1 = (AU ′′ +A2U ′′ + · · ·+Ak−1U ′′)⊕W ′

for some A-invariant subspace W ′. Then Then

V = U ′ + U +AU ′′ +A2U ′′ + · · ·+Ak−1U ′′ +W ′

= (U +AU + · · ·+Ak−1U) + (U ′ +AU ′ + · · ·Ak−1U ′ +W ′).

Let us define
W = U ′ +AU ′ + · · ·+Ak−1U ′ +W ′,

which is an A-invariant subspace. It remains to show that W intersects U + AU + · · · + Ak−1U
trivially. Suppose it does not. Then

u0 +Au1 + · · ·+Ak−1uk−1 = u′0 +Au′1 + · · ·+Ak−1u′k−1 + w′

for some ui ∈ U and u′i ∈ U ′ and w′ ∈W ′. Applying Ak−1 to the above equation tells us that

Ak−1(u0 − u′0) = 0

so u0 = u′0 by virtue of the direct sum decomposition of V . This implies

A(u1 − u′1) + · · ·+Ak−1(uk−1 − u′k−1) = w′,

a contradiction to the direct sum decomposition of kerAk−1.
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Proposition 7.6. Let A be a nonzero nilpotent matrix. Then after a change of basis

A = A1 ⊕ · · · ⊕Am

where each Ai is a block of the form 
0 1 0 · · · 0

0 0 1
. . .

...
... 0

. . .
. . . 0

0 · · · 0 0 1
0 0 · · · 0 0

 .

Proof. We induct on the dimension n of V . The case n = 1 is trivial. For the inductive step,
suppose Ak = 0 for some positive integer k that is chose to be the smallest. Let u be a vector
chosen such that Ak−1u 6= 0, which exists otherwise we contradict the minimality of k. Consider
the one-dimensional subspace U spanned by u. By the previous lemma, there is a direct sum
decomposition

V = (U +AU + · · ·+Ak−1U)⊕W

Hence A = A1 ⊕ A′, where A1 is a linear map on U + AU + · · · + Ak−1U , and A′ is a linear
map on W . Since A′ is a nilpotent matrix as well and dimW < n, one can apply the inductive
hypothesis on A′. As for A1, consider the vectors Ak−1u,Ak−2u, . . . , Au, u, which is clearly a basis
for U + AU + · · ·+ Ak−1U . Then, with respect to this basis, A1 is a block of the form as claimed
in the proposition.

7.3 The Jordan Canonical Form in General

We have now come to the main theorem in the decomposition of matrices. This result will allow
us to find the exponential of any matrix easily.

Definition 7.7. Define the Jordan block Jλk to be the k × k matrix

Jλk =


λ 1 0 · · · 0

0 λ 1
. . .

...
... 0

. . .
. . . 0

0 · · · 0 λ 1
0 0 · · · 0 λ

 .

Theorem 7.8 (Jordan Canonical Form). Every n × n matrix A can be written as A = SJS−1,
where

J = Jλ1k1 ⊕ · · · ⊕ J
λl
kl
.

Furthermore, we have the following statements.
• The number of Jordan blocks corresponding to an eigenvalue λ equals the number of linearly

independent eigenvectors for λ.
• The sum of the sizes of Jordan blocks corresponding to an eigenvalue λ equals the multiplicity

for λ.
• The number of Jordan blocks of size k equals

dim ker(A− λI)k − dim ker(A− λI)k−1.
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Proof. This theorem is a consolidation of all the results proven in the last two subsections. The
only thing not written out explicitly is how to use the previous subsection on a general generalized
eigenspace Eλ with λ = 0. For this, one considers the nilpotent map A− λI on Eλ.

From the proof of proposition 7.6, one can extract out a method to construct the change of
basis matrix S in our Jordan Canonical Form A = SJS−1 of A. Let us restrict out attention to a
generalized eigenspace Eλ.
• Compute the dimensions of the spaces Vm = ker(A− λI)m.
• Let k be the largest integer such that Vk−1 ( Vk. Write down a basis v1, . . . , vp for Vk−1, and

extend it to a basis v1, . . . , vp, w1, . . . , wq for Vk.
• For each i, the vectors (A − λI)k−1wi, (A − λI)k−2wi, . . . , wi forms a Jordan block of size k

as follow: arrange in order some consecutive rows

Wi = (A− λI)k−1wi (A− λI)k−2wi · · · wi

and associate to this the Jordan block Jλk of size k.
• Perform the same steps as above to the next largest integer k′ such that Vk′−1 ( Vk′ , and

continue doing this until no such k′ exists.
• Do the same steps to all the generalized eigenspaces Eλ.
• The resulting S we want is the ordered arrangements of all the Wi’s above (across all Eλ’s),

and the J we want is the ordered direct sum of all the Jordan blocks associated to the W ′is.
After using this method to compute the Jordan Canonical Form, one can use Lecture 5 to say that

etA = SetJS−1, Ak = SJkS−1.

Example 7.9. Consider the matrix

A =

1 1 1
0 1 0
0 0 1

 .
Note that 1 is the only eigenvalue of A, of multiplicity 3. A computation with the rank-nullity
theorem tells us that

dim ker(A− I) = dim ker

0 1 1
0 0 0
0 0 0

 = 2,

dim ker(A− I)2 = dim ker

0 0 0
0 0 0
0 0 0

 = 3.

A basis for ker(A− I) is

v1 =

1
0
0

 , v2 =

 0
1
−1

 ,
and we complete this to a basis for ker(A− I)2:

v1 =

1
0
0

 , v2 =

 0
1
−1

 , v3 =

0
0
1

 .
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Observe that

(A− I)v3 =

1
0
0

 , v3 =

0
0
1

 ,
and v2 is an eigenvector linearly independent from these two vectors. Hence one can take

S =
[

(A− I)v3 v3 v2
]

=

1 0 0
0 1 0
0 −1 1

 ,
J =

1 1 0
0 1 0
0 0 1

 ,
and A = SJS−1, where S−1 can be computed by the adjunct formula or by Cayley-Hamilton.

Example 7.10. Consider the matrix

A =


2 0 1 −3
0 2 10 4
0 0 2 0
0 0 0 3

 .
This matrix has eigenvalues 2 and 3, of multiplicities 3 and 1 respectively.

For the eigenvalue 2, observe that

dim ker(A− 2I) = dim ker


0 0 1 −3
0 0 10 4
0 0 0 0
0 0 0 1

 = 2,

dim ker(A− 2I)2 = dim ker


0 0 0 −3
0 0 0 4
0 0 0 0
0 0 0 1

 = 3.

A basis for ker(A− 2I) is

v1 =


1
0
0
0

 , v2 =


0
1
0
0

 ,
and we complete this to a basis for ker(A− 2I)2:

v1 =


1
0
0
0

 , v2 =


0
1
0
0

 , v3 =


0
0
1
0

 .
Observe that

(A− 2I)v3 =


1
10
0
0

 , v3 =


0
0
1
0

 ,
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and v2 is an eigenvector linearly independent from these two vectors.
As for the eigenvalue 3, observe that

w1 =


−3
4
0
1


is an eigenvector.

To summarize, one can take

S =
[

(A− 2I)v3 v3 v2 w1

]
=


1 0 0 −3
10 0 1 4
0 1 0 0
0 0 0 1

 ,

J =


2 1 0 0
0 2 0 0
0 0 2 0
0 0 0 3

 ,
and A = SJS−1, where S−1 can be computed by the adjunct formula or by Cayley-Hamilton.

Example 7.11. Consider the matrix

A =

3 −1 0
1 1 0
0 1 2

 .
Note that 2 is the only eigenvalue of A, of multiplicity 3. A computation with the rank-nullity
theorem tells us that

dim ker(A− 2I) = dim ker

1 −1 0
1 −1 0
0 1 0

 = 1,

dim ker(A− 2I)2 = dim ker

0 0 0
0 0 0
1 −1 0

 = 2,

dim ker(A− 2I)3 = dim ker

0 0 0
0 0 0
0 0 0

 = 3.

A basis for ker(A− 2I) is

v1 =

0
0
1

 .
We complete this to a basis for ker(A− I)2:

v1 =

0
0
1

 , v2 =

1
1
0

 ,
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followed by a basis for ker(A− I)3:

v1 =

0
0
1

 , v2 =

1
1
0

 , v3 =

1
0
0

 .
Observe that

(A− I)2v3 =

0
0
1

 , (A− I)v3 =

1
1
0

 , v3 =

1
0
0

 .
Hence one can take

S =
[

(A− I)2v3 (A− I)v3 v3
]

=

0 1 1
0 1 0
1 0 0

 ,
J =

2 1 0
0 2 1
0 0 2

 ,
and A = SJS−1, where S−1 can be computed by the adjunct formula or by Cayley-Hamilton.

Example 7.12. Consider the matrix

A =


0 1 0 0
11 6 −4 −4
22 15 −8 −9
−3 −2 1 2

 .
The characteristic polynomial of A is (x+1)2(x−1)2, so it has eigenvalues −1 and 1, of multiplicities
2 and 2 respectively.

For the eigenvalue −1, observe by rank-nullity that

dim ker(A+ I) = dim ker


1 1 0 0
11 7 −4 −4
22 15 −7 −9
−3 −2 1 3

 = 1,

dim ker(A+ I)2 = dim ker


12 8 −4 −4
12 8 −4 −4
60 40 −20 −24
−12 −8 4 8

 = 2.

A basis for ker(A+ I) is

v1 =


−1
1
−1
0


and we complete this to a basis for ker(A+ I)2:

v1 =


−1
1
−1
0

 , v2 =


0
1
2
0

 ,
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Observe that

(A+ I)v2 =


1
−1
1
0

 , v2 =


0
1
2
0

 .
Similarly, for the eigenvalue 1, observe by rank-nullity that

dim ker(A− I) = dim ker


−1 1 0 0
11 5 −4 −4
22 15 −9 −9
−3 −2 1 1

 = 1,

dim ker(A− I)2 = dim ker


12 4 −4 −4
−32 −16 12 12
−28 −20 12 12

0 0 0 0

 = 2.

A basis for ker(A− I) is

w1 =


0
0
1
−1


and we complete this to a basis for ker(A− I)2:

w1 =


0
0
1
−1

 , w2 =


1/4
1/4c

0
1

 .
Observe that

(A− I)w2 =


0
0

1/4
−1/4

 , w2 =


1/4
1/4
0
1

 .
To summarize, one can take

S =
[

(A+ I)v2 v2 (A− I)w2 w2

]
=


1 0 0 1/4
−1 1 0 1/4
1 2 1/4 0
0 0 −1/4 1

 ,

J =


−1 1 0 0
0 −1 0 0
0 0 1 1
0 0 0 1

 ,
and A = SJS−1, where S−1 can be computed by the adjunct formula or by Cayley-Hamilton.
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8 Lecture 8 – First Order Constant Linear ODEs Part 3

In this lecture we discuss two techniques to reduce computations for special kinds of first order
constant linear ODEs.

8.1 An Application of Invariant Subspaces

This trick only works if the n× n matrix A in our differential equation

#»x ′(t) = A #»x(t), #»x(t0) = #»x0

satisfies the following two conditions:
• #»x0 is 0 after the kth entry,
• the first k columns of A all have zero entries after the kth row.

These conditions are rigged so that A has an invariant subspace consisting of the first k entries.
Hence we can do the following to simplify our computations.
• Let B be the top left k × k matrix in A, and let y0 be vector consisting of the first k entries

in #»x0.
• Compute etBy0.
• The solution #»x(t) has etBy0 as the first k entries, and 0 after the kth entry.

Example 8.1. Consider #»x ′(t) = A #»x(t) with initial condition #»x(0) = (1, 1, 0, 0, 0), where

A =


3 1 0 0 0
0 3 1 0 0
0 0 3 0 0
0 0 0 −4 6
0 0 0 −9 11

 .

To find the solution it suffices to compute etB, where

B =

[
3 1
0 3

]
.

The exponential matrix for Jordan blocks then tells us that

#»x(t) =


e3t te3t 0 0 0
0 e3t 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




1
1
0
0
0

 =


(t+ 1)e3t

e3t

0
0
0

 .

8.2 Buchheim’s Algorithm and Some Formulas for Exponentiating Matrices

The exponential of a general square matrix can be computed using its Jordan Canonical Form, or
using the so-called Buchheim’s Algorithm. We discuss the general Buchheim’s Algorithm here, and
give simple exponentiating formulas for 2× 2 and 3× 3 matrices, as well as diagonalizable matrices
with distinct eigenvalues. For the purposes of this course, the best strategy is to choose to use
these simple formulas whenever they apply, since it is not computationally easy to find generalized
eigenvectors or use Buchheim’s Algorithm.
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Buchheim’s Algorithm

In general one computes the exponential of a matrix using Jordan Canonical Form. However, let us
discuss Buchheim’s Algorithm here as well, since a similar method will be used for the next lecture.

Let A be an n× n real matrix. Then the Cayley-Hamilton Theorem tells us that A satisfies its
characteristic polynomial det(A− xI). Use the Fundamental Theorem of Algebra to factorize the
characteristic polynomial as

(A− λ1I)n1 · · · (A− λkI)nk = 0.

Then we know that each λj is an eigenvalue of A, and there exists an eigenvector vj corresponding
to each λj .

We now want to show that the general solution to

#»x ′(t) = A #»x(t)

can be written as

#»x(t) =
k∑
j=1

nj∑
i=1

ti−1eλjtCj,i

for some constant 1×n matrices Cj,i. To do this, we need to use the fact that the space of solutions
is of dimension n (for, after specifying the initial condition, one has a unique solution). With this
fact, it suffices to show that the space of solutions for

(A− λjI)nj #»x(t) =

(
d

dt
− λj

)nj
#»x(t) = 0

is of dimension nj . Write our general solution as u(t)eλjtvj . Then

(A− λjI)nju(t)eλjtvj =
dnj

dtnj
(u(t))eλjtvj = 0,

so u(t) is a polynomial in t of degree nj − 1, completing our claim.
On the other hand, the general solution to #»x ′(t) = A #»x(t) can also be written in terms of

the exponential matrix as #»x(t) = etAC, where C is determined by the initial condition. We now
describe Buchheim’s Algorithm, which basically reconciles these two ways of computing #»x(t).

Proposition 8.2 (Buchheim’s Algorithm). Let A be an n×n matrix, and suppose A has eigenvalues
λj of multiplicities nj. For each eigenvalue λj, associate to it the numbers

eλjt, teλjt, . . . , tnj−1eλjt.

Then one can write

etA =

k∑
j=1

nj∑
i=1

ti−1eλjtCj,i

for some constant n× n matrices Cj,i.

Proof. Consider the differential equation

#»x ′(t) = A #»x(t), #»x(0) = #»x0 .

By the arguments above one sees that

etA #»x0 =

k∑
j=1

nj∑
i=1

ti−1eλjtCj,i,
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for some constant 1× n matrices Cj,i depending on #»x0. By choosing #»x0 to be one of the standard
basis e1, . . . , en, one sees that the cth column of etA can be written as

k∑
j=1

nj∑
i=1

ti−1eλjtCcj,i

for some constant 1× n matrices Ccj,i. This completes the proof of the proposition.

Of course, using the fact that complex eigenvalues λ = α ± βi occurs in conjugate pairs, after
a linear change of variables we can replace every instance of e(α±βi)t with eαt cosβt and eαt sinβt.
We now demonstrate Buchheim’s Algorithm on the following example.

Example 8.3. Let us compute etA for

A =


1 1 0 0
0 1 1 0
0 0 1 −1/8
0 0 1/2 1/2


A computation tells us that A has eigenvalues λ1 = 3/4 and λ2 = 1, both of multiplicities two.
Buchheim’s Algorithm then tells us that

etA = e3/4tC1,1 + te3/4tC1,2 + etC2,1 + tetC2,2

for some constant 4× 4 matrices Cj,i. To evaluate these constants we solve the equations

I = e0A = C1,1 + C2,1

A =
d

dt

∣∣∣∣
t=0

etA =
3

4
C1,1 + C1,2 + C2,1 + C2,2

A2 =
d2

dt2

∣∣∣∣
t=0

etA =
9

16
C1,1 +

3

2
C1,2 + C2,1 + 2C2,2

A3 =
d3

dt3

∣∣∣∣
t=0

etA =
27

64
C1,1 +

27

16
C1,2 + C2,1 + 3C2,2

to get

C1,1 = 128A3 − 366A2 + 288A− 80I

C1,2 = 16A3 − 44A2 + 40A− 12I

C2,1 = −128A3 + 366A2 − 288A+ 80I

C2,2 = 16A3 − 40A2 + 33A− 9I.

Note that the constant above can be gotten by taking the inverse matrix of the coefficients of the
equations of I, A, A2, A3. After computing Cj,i, we see that

etA =


et tet (8t− 48)et + (4t+ 48)e3t/4 (16− 2t)et + (−2t− 16)e3t/4

0 et 8et + (−t− 8)e3t/4 −1
2(4et + (−t− 4)e3t/4)

0 0 1
4(t+ 4)e3t/4 −1

8 te
3t/4

0 0 1
2 te

3t/4 −1
4(t− 4)e3t/4

 .
One can also compute the Jordan Canonical Form of A and check that it agrees with this answer.
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2× 2 Matrices

Here are the exponentiation formulas for 2× 2 matrices.

Proposition 8.4. Let A be a 2× 2 matrix.
(a) If A has two distinct eigenvalues λ1 and λ2, then

etA =
eλ1t

λ1 − λ2
(A− λ2I) +

eλ2t

λ2 − λ1
(A− λ1I)

(b) If A has a unique eigenvalue λ, then

etA = eλt(I + t(A− λI)).

Part (b) was proven in the previous subsection, and Part (a) is a special case of Theorem 8.7.
Let us consider an example.

Example 8.5. If A has distinct complex eigenvalues a+ ib and a− ib, then an application of the
previous proposition, together with the identity eiθ = cos θ + i sin θ, tells us that

etA = eat cos(bt)I +
1

b
eat sin(bt)(A− aI).

In particular, if

A =

[
a −b
b a

]
,

then

etA = eat
[
cos(bt) − sin(bt)
sin(bt) cos(bt),

]
.

Note that this example and the previous proposition completely characterizes the exponential
matrix of 2× 2 real matrices.

3× 3 Matrices

Here are the exponentiation formulas for 3× 3 matrices.

Proposition 8.6. Let A be a 3× 3 matrix.
(a) If A has three distinct eigenvalues λ1 and λ2, then

etA =
eλ1t

(λ1 − λ2)(λ1 − λ3)
(A2 − (λ2 + λ3)A+ λ2λ3I)

+
eλ2t

(λ2 − λ1)(λ2 − λ3)
(A2 − (λ1 + λ3)A+ λ1λ3I)

+
eλ3t

(λ3 − λ2)(λ3 − λ1)
(A2 − (λ1 + λ2)A+ λ1λ2I).

(b) If A has two eigenvalues λ1 and λ2 of multiplicities one and two, then

etA = eλ2tI + teλ2t(A− λ2I) +
eλ1t − eλ2t + (λ2 − λ1)teλ2t

(λ2 − λ1)2
(A− λ2I)2
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(c) If A has a unique eigenvalue λ, then

etA = eλt
(
I + t(A− λI) +

t2

2
(A− λI)2

)
.

Part (c) was proven in the previous subsection, and Part (a) is a special case of Theorem 8.7.
We now prove part (b) by demonstrating Buchheim’s Algorithm. If A has two eigenvalues λ1 and
λ2 of multiplicities one and two, then

etA = eλ1tB + eλ2tC + teλ2tD

for some constant 3× 3 matrices B, C, D. To find these constants we solve

I = B + C

A = λ1B + λ2C +D

A2 = λ21B + λ22C + 2λ2D

to get

B =
1

(λ2 − λ1)2
(A− λ2I)2

C =
1

(λ2 − λ1)2
(A− λ2I + λ1 − λ2)(λ1 −A)

D =
1

(λ2 − λ1)
(A− λ1)(A− λ2)

This gives us our desired formula for etA after rearranging.

Diagonalizable Matrices

For diagonalizable matrices with distinct eigenvalues we have the following formula.

Theorem 8.7 (Sylvester’s Formula). Suppose A is a diagonalizable n × n matrix with distinct
eigenvalues λ1, . . . , λn. Then

etA =
n∑
i=1

eλit
∏
j 6=i

1

λi − λj
(A− λjI).

Proof Sketch. Use Buchheim’s Algorithm and a careful analysis with Vandermonde matrices. We
omit the details here as this theorem will not be needed in this course. Of course you can still use
Sylvester’s Formula in this course, and the cases for n = 2 and n = 3 and n = 4 can be derived
easily by hand.
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9 Lecture 9 – Equilibrium Points

Up till now we have considered linear ODEs of the form #»x ′(t) = A #»x(t), where A is an n× n real
matrix. In this lecture we will talk about nonlinear analysis around equilibrium points.

9.1 Linearization

Let #»x(t) = (x1(t), . . . , xn(t)). Consider a nonlinear ODE of the form

#»x ′(t) = (f1, . . . , fn),

where fi are functions in x1(t), . . . , xn(t). An example of such an ODE is

dx

dt
= (y − x)(1− x− y),

dy

dt
=
x

2
+ xy.

(This ODE is nonlinear because there are terms of order 2.)
We would like to describe the solution to this ODE. The explicit methods discussed in the

previous lectures will not work here since our ODE is nonlinear, and in fact we can’t solve these
ODEs in general. However, we can try to describe the behavior of solutions with initial conditions
near equilibrium points.

Definition 9.1. An equilibrium point for our nonlinear ODE is a point #»x∗ = (x1, . . . , xn) such
that fi(x1, . . . , xn) = 0 for all i.

If we factor in the time variable, an equilibrium point #»x∗ is a constant solution to the nonlinear
ODE after fixing a starting time t0. Let us now write #»v ( #»x) = (f1, . . . , fn), i.e. the nonlinear ODE
#»x ′(t) but forgetting that each xi depends on t. By the multivariable Taylor expansion, for every
#»x close to #»x∗,

#»v ( #»x) ≈ #»v ( #»x∗) + [D #»v ( #»x∗)](
#»x − #»x∗) = [D #»v ( #»x∗)](

#»x − #»x∗),

where recall [D #»v ] is the Jacobian matrix

[D #»v ] =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn

 ,
and [D #»v ( #»x∗)] is this matrix evaluated at the point #»x∗.

Definition 9.2. The linearization of a nonlinear ODE at an equilibrium point x∗ is the linear
ODE

#»x ′(t) = [D #»v ( #»x∗)](
#»x(t)− #»x∗).

Example 9.3. Let us consider the example above:

dx

dt
= (y − x)(1− x− y),

dy

dt
=
x

2
+ xy.

The four equilibrium points are

(0, 0), (0, 1), (−1/2,−1/2), (3/2,−1/2).

The Jacobian matrix of this nonlinear ODE is

[D #»v ] =

[
2x− 1 −2y + 1
y + 1

2 x

]
,

and [D #»v ( #»x∗)] for the respective four equilibrium points are[
−1 1
1
2 0

]
,

[
−1 −1
3
2 0

]
,

[
−2 2
0 −1

2

]
,

[
2 2
0 3

2

]
.
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9.2 Stability

We now focus our attention to two-dimensional nonlinear ODEs, i.e. when we have only two
variables x1 and x2. In this case the Jacobian matrix have either both real eigenvalues, or complex
conjugate eigenvalues (since the characteristic polynomial is of degree two).

Proposition 9.4. Consider a two-dimensional nonlinear ODE. Let #»x∗ be an equilibrium point.
After computing the eigenvalues of the Jacobian matrix [D #»v ], the equilibrium point #»x∗ is a:
• stable node if the eigenvalues are both real and negative;
• unstable node if the eigenvalues are both real and positive;
• saddle point if the eigenvalues are both real with opposite signs;
• stable spiral if the eigenvalues are both complex with negative real part;
• unstable spiral if the eigenvalues are both complex with positive real part;
• stable center if the eigenvalues are both purely imaginary.

Proof. Casework using elements from previous lectures.

The case of zero eigenvalues is left out since analysis of it is slightly more difficult (it has both
stable and unstable components). We will not dwell on this case in this course.

Example 9.5. Let us return to Example 9.3. Then one sees that:
• (0, 0) is a saddle;
• (0, 1) is a stable spiral;
• (−1/2,−1/2) is a stable node;
• (3/2,−1/2) is an unstable node.
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10 Lecture 10 – Some ODEs Related to First Order ODEs

In this lecture we discuss five other kinds of ODEs that we can solve easily. The first four are
closely related to first order constant linear ODEs, and the last is related to the next lecture.

10.1 Higher Order Constant Linear ODEs

Consider an ODE of the form

cny
(n)(t) + cn−1y

(n−1)(t) + · · ·+ c1y
′(t) + c0y(t) = 0

with cj constant real numbers. By introducing the vector #»x(t) = (y(n−1)(t), . . . , y′(t), y(t)), one
observes that the above equation is equivalent to the first row of

#»x ′(t) = A #»x(t)

for a determined n × n constant matrix A. Using the same argument in Buchheim’s Algorithm,
after computing det(λI −A) we are led to the following method for solving this kind of equation.
• Solve the characteristic equation

cnλ
n + cn−1λ

n−1 + · · ·+ c1λ+ c0 = 0.

• If λ is a real solution with multiplicity k, associate to it the functions

eλt, teλt, . . . , tk−1eλt.

• If λ = α± βi is a pair of complex solutions with multiplicity k, associate to it the functions

eαt cosβt, eαt sinβt, teαt cosβt, teαt sinβt, . . . , tk−1eαt cosβt, tk−1eαt sinβt.

• The general solution to the ODE above is a linear combination of the functions above, where
the coefficients are determined by the initial conditions.

Of course, as was hinted in Lecture 2, any such ODE can be converted into a first order linear
ODE. This is not needed in this case, and we will delay this discussion to Lecture 13 where we
consider a more general kind of ODE.

Example 10.1. Hooke’s Law is the differential equation

my′′(t) = −ky(t),

where m is the mass of your object and k is the spring constant. By solving this equation, we see
that the general solution is

y(t) = c1 cosωt+ c2 sinωt, ω =

√
k

m
.

By defining A =
√
c21 + c22, and the angle δ such that

cos δ =
c1
A
, sin δ = −c2

A
,

one can also write y(t) as
y(t) = A cos(ωt+ δ).

The constants ω, A, δ are usually called frequency, amplitude, and phase angle respectively. In
Lecture 13 we will see how to solve the resonance equation, which is Hooke’s Law together with some
noise that tells us the unboundedness of solutions when the frequency matches external frequency.
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Example 10.2. In order to solve

y′′′(t)− 2y′′(t)− 4y′(t) + 8y(t) = 0, y(0) = 0, y′(0) = 2, y′′(0) = 4,

one computes the characteristic equation

λ3 − 2λ2 − 4λ+ 8 = (λ− 2)2(λ+ 2) = 0,

telling us the general solution is

y(t) = c1e
2t + c2te

2t + c3e
−2t.

The coefficient can be found by substituting our initial conditions into our general solution:

y(0) = 0 = c1 + c3,

y′(0) = 2 = 2c1 + c2 − 2c3,

y′′(0) = 4 = 4c1 + 4c2 + 4c3.

Thus

y(t) =
1

4
e2t + te2t − 1

4
e−2t.

10.2 First Order Nonconstant Linear ODEs with Time-Commuting Matrices

We have already mentioned that the general solution to #»x ′(t) = A(t) #»x(t), where A(t) is a matrix
function in t, is not #»x(t) = e

∫
A(t) dtC for some constant matrix C. This is because of the fact

that A might not be a time-commuting matrix, i.e. that A(t1)A(t2) 6= A(t2)A(t1). However, if this
inequality is an equality, then clearly this formula still works.

Proposition 10.3. Consider the differential equation #»x ′(t) = A(t) #»x(t). Suppose A(t) is a time-
commuting matrix, so A(t1)A(t2) = A(t2)A(t1). Then the solution to this differential equation
is

#»x(t) = e
∫
A(t) dtC,

where C determined by the initial condition. �

We will learn the general theory of such equations without the time-commuting assumption,
and some methods to solve them, after the midterm.

Example 10.4. The matrices

A(t) =

[
1 − cos t

cos t 1

]
, B(t) =

[
1 cos t

cos t 1

]
, C(t) =

[
cos t − sin t
sin t cos t

]
are all time-commuting matrix.

10.3 Recursively Coupled Systems

A recursively coupled system is simply a system of differential equations of the form

x′1(t) = f1(x1, . . . , xn), x′2(t) = f1(x2, . . . , xn), · · · , x′n(t) = f1(xn),

where x′j(t) depends only on xj(t), xj+1(t), . . . , xn(t). This system of differential equations can
solved recursively, by first solving xn(t), then solving xn−1(t), and so on.

Example 10.5. The differential equation

x′(t) = y(t), y′(t) = y(t)

with initial conditions x(t0) = x0 and y(t0) = y0 has solution

x(t) = y0e
t−t0 − 1 + x0, y(t) = y0e

t−t0 .
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10.4 Change of Variables

We can sometimes do a change of variables to convert a hard-looking ODE with some form sym-
metry into another ODE that we know how to solve. There is no systematic theory for change of
variables as it depends on the problem at hand, so we shall demonstrate it via two examples.

Example 10.6. A Cauchy-Euler Equation is a differential equation of the form

anx
ny(n)(x) + an−1x

n−1y(n−1)(x) + · · ·+ a1xy
′(x) + a0y(x) = 0

with all the ai constants. By introducing the change of variables x = eu, one gets the identities

dx

du
= eu, xk

dky

dxk
= D(D − 1) · · · (D − k + 1)y(eu),

where D = d/du. Substituting these to the Cauchy-Euler Equation, and writing g(u) = y(eu),
gives us

anD(D− 1) · · · (D− n+ 1)g(u) + an−1D(D− 1) · · · (D− n+ 2)g(u) + · · ·+ a1Dg(u) + a0g(u) = 0,

where the derivative is now with respect to u. Subsection 10.1 gave us a complete method of finding
g(u), and y(x) can be recovered from g(u) by replacing every instance of u with lnx. Summarizing,
we have the following method.
• Solve the characteristic equation

anλ(λ− 1) · · · (λ− n+ 1) + an−1λ(λ− 1) · · · (λ− n+ 2) + · · ·+ a1λ+ a0 = 0.

• If λ is a real solution with multiplicity k, associate to it the functions

xλ, (lnx)xλ, . . . , (lnx)k−1xλ.

• If λ = α± βi is a pair of complex solutions with multiplicity k, associate to it the functions

xα cos(β lnx), (lnx)xα cos(β lnx), . . . , (lnx)k−1xα cos(β lnx),

xα sin(β lnx), (lnx)xα sin(β lnx), . . . , (lnx)k−1xα sin(β lnx).

• The general solution y(x) will then be a linear combination of the functions above, where the
coefficients are determined by the initial conditions.

For example, in order to find the general solution to

x2y′′(x) + xy′(x) + 36y(x) = 0,

one solves λ(λ− 1) + λ+ 36 = 0 to get λ = ±6i. Then the general solution will be

y(x) = c1 cos(6 lnx) + c2 sin(6 lnx).

Example 10.7. Sometimes one can decouple a system to change it into a recursively coupled one.
Consider the differential equation

x′(t) = y(t) + x(t)(1− x2(t)− y2(t)),
y′(t) = −x(t) + y(t)(1− x2(t)− y2(t)),

51



with x(0) = x0 and y(0) = y0. Let us assume for simplicity that x0 > 0 and y0 > 0, and we search
for solutions starting at (x0, y0), i.e. with t ≥ 0. By writing x = r cos θ and y = r sin θ, one gets

r′(t) =
d

dt

√
x2(t) + y2(t)

=
x(t)x′(t)√
x2(t) + y2(t)

+
y(t)y′(t)√
x2(t) + y2(t)

= r(t)(1− r2(t)).

Also θ′(t) = −1 by comparing the formula for x′(t) above with

x′(t) =
d

dt
r(t) cos θ(t)

= r′(t) cos θ(t)− r(t)θ′(t) sin θ(t)

= r(t)(1− r2(t)) cos θ(t)− r(t)θ′(t) sin θ(t)

= x(t)(1− x2(t)− y2(t))− θ′(t)y(t).

Hence to solve for x(t) = r(t) cos θ(t) and y(t) = r(t) sin θ(t) one just needs to solve for

r′(t) = r(t)− r3(t), θ′(t) = −1,

with r(0) =
√
x20 + y20 and θ(0) = arctan(x0y

−1
0 ). The first ODE is a Bernoulli equation. We

learned from Lecture 1 that in order to solve this one substitutes u(t) = r−2(t) to get

u′(t) = −2u(t) + 2, u(0) = u0 =
1

r20
.

whence u(t) = 1− e−2t(1− u0). This implies

r(t) =
r0e

t√
r20e

2t − (r20 − 1)

which is well-defined if we assume t ≥ 0. The second ODE is easy; it has as solution

θ(t) = θ0 − t.

Therefore by using angle formulas[
x(t)
y(t)

]
=

et√
1− (x20 + y20) + (x20 + y20)e2t

[
cos t sin t
− sin t cos t

] [
x0
y0

]
.

Notice that, if we write #»x(t) = (x(t), y(t)) and #»x0 = (x0, y0), then

lim
t→∞

#»x(t) =

[
cos t sin t
− sin t cos t

]
#»x0

‖ #»x0 ‖
.

Hence any solution to our ODE stabilizes eventually, and circles around the unit circle centered at
(0, 0) with period 2π. The point (0, 0) is an equilibrium point, and the unit circle centered at (0, 0)
is a limit cycle. In general understanding the behavior of ODEs is hard, and is an active area of
research. We will learn some criteria to determine the stability of equilibrium points in the next
lecture.
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10.5 Hamiltonian ODEs

It is hard to solve a general 2-dimensional ODE. For a lot of applications it is more important to
know the solution curve of an ODE, and not the explicit solution for it. In this subsection we study
the case of Hamiltonian ODEs, leaving the more general situation for the next lecture. The reason
why Hamiltonian ODEs are easier to study is two-fold:
• it gives rise to a conservative vector field, from which we can write down the solution curves

using techniques from Calculus I and II, and
• the corresponding solution curve in the xyz-plane (ignoring parameter t) is a level curve.

This is particularly important in physical applications as it gives us a quantity that is conserved
over time.

Definition 10.8. A system of ODEs of the form

x′(t) = f(x(t), y(t)), y′(t) = g(x(t), y(t))

is Hamiltonian if
∂

∂x
f(x, y) +

∂

∂y
g(x, y) = 0.

Proposition 10.9. Let #»x(t) = (x(t), y(t)) be a solution to the Hamiltonian ODE above. Then the
graph H(x, y) traced out by the solution is a level curve. It can be computed by

H(x, y) = −
∫
g(x, y) dx+ α(y) or H(x, y) =

∫
f(x, y) dy + β(x),

where α(y) and β(x) can be found by equating the two ways of finding H(x, y).

Proof. Consider the vector field #»v (x, y) = (f(x, y), g(x, y)). Notice that the perpendicular vector
field #»v⊥(x, y) = (−g(x, y), f(x, y)) satisfies

− ∂

∂y
g(x, y) =

∂

∂x
f(x, y)

by assumption, so we have our claim for computing H(x, y). Also

dH

dt
=
∂H

∂x

dx

dt
+
∂H

∂y

dy

dt
= −gf + fg = 0,

so H(x, y) is a level curve.

Example 10.10. Consider

x′(t) = −2x4(t)y3(t)− y(t), y′(t) = 2x3(t)y4(t) + x(t),

with initial conditions x(t0) = 0 and y(t0) = −2. In this case

∂

∂x
(−2x4y3 + y) = −8x3y3,

∂

∂y
(2x3y4 + x) = 8x3y3,

and after some computation

H(x, y) =
−x4y4 − y2 − x2

2
.

To find the level of H(x, y), one substitutes the initial conditions to see that H(0,−2) = −2. Hence
the solution (x(t), y(t)) to our ODE satisfies H(x, y) = −2, or

y2 + x4y4 + x2 = 4,

and this graph looks like a “deformed circle”.
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11 Lecture 11 – Midterm Review

11.1 Midterm Review

A review of lectures 1 to 9 was given during this lecture. You should be comfortable with the topics
below; this list is also repeated in the next lecture.

One-Dimensional ODEs

• Separable and First Order Linear ODEs
• Bernoulli and Ricatti ODEs

Matrices

• Row Echelon Form
• Compute inverses using cofactor expansion or the Cayley-Hamilton Theorem
• Rank-Nullity Theorem
• Eigenvalues and generalized eigenvectors
• Jordan Canonical Form
• Compute powers and exponentials using Jordan Canonical Form or Buchheim’s Algorithm
• Exponentiation formulas for nilpotent, diagonalizable, and small matrices

First Order Constant Linear ODEs

• Duhamel’s Formula
• Reduction of order
• Linearization and stability
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12 Lecture 12 – Midterm

12.1 Midterm

The midterm was given during this lecture; see subsection 21.6. Below is a non-exhaustive list of
things that you should know for the midterm.

One-Dimensional ODEs

• Separable and First Order Linear ODEs
• Bernoulli and Ricatti ODEs

Matrices

• Row Echelon Form
• Compute inverses using cofactor expansion or the Cayley-Hamilton Theorem
• Rank-Nullity Theorem
• Eigenvalues and generalized eigenvectors
• Jordan Canonical Form
• Compute powers and exponentials using Jordan Canonical Form or Buchheim’s Algorithm
• Exponentiation formulas for nilpotent, diagonalizable, and small matrices

First Order Constant Linear ODEs

• Duhamel’s Formula
• Reduction of order
• Linearization and stability
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13 Lecture 13 – Some General Theory for Linear ODEs

In this lecture we will sketch the general theory of linear ODEs with examples. Most of the proofs
will be omitted as they are not essential to the course.

13.1 The Space of Solutions

Let #»v ( #»x , t) be a continuous function from Rn×[a, b] to Rn satisfying the Lipschitz condition:

‖ #»v ( #»y , t)− #»v ( #»x , t)‖ ≤ L‖ #»y − #»x ‖

for some fixed L, all #»x , #»y ∈ Rn, and all t ∈ [a, b].

Example 13.1. An example of such a continuous function is a system of constant coefficient linear
ODEs #»v ( #»x , t) = A #»x . Here we can take L to be the sum of squares of all the entries of A.

The following theorem gives the foundation for everything we do in this course.

Theorem 13.2 (Picard-Lindelöf). Fix t0 ∈ (a, b) and #»x0 ∈ Rn. Then there is a unique solution to

#»x ′(t) = #»v ( #»x , t), #»x(t0) = #»x0 .

This solution is continuous on [a, b] and differentiable on (a, b). In particular, the space of general
solutions to #»x ′(t) = #»v ( #»x , t) has dimension n.

Proof. Omitted as it is beyond the scope of the course.

Among other things, this theorem implies that there are n linearly independent solutions to an
ODE of the form #»x ′(t) = A #»x(t), or in particular an ODE of the form

cny
(n)(t) + cn−1y

(n−1)(t) + · · ·+ c1y
′(t) + c0y(t) = 0.

13.2 Flows and the General Duhamel’s Formula

We now specialize to the case #»x ′(t) = A(t) #»x(t), where A(t) is a continuous n × n real matrix on
the interval (a, b).

Theorem 13.3. Consider
#»x ′(t) = A(t) #»x(t), #»x(t0) = #»x0 .

Suppose x1(t), . . . , xn(t) are n solutions such that the matrix[
x1(t0) x2(t0) · · · xn(t0)

]
is invertible. Define

M(t, s) =
[
x1(t) x2(t) · · · xn(t)

] [
x1(s) x2(s) · · · xn(s)

]−1
.

Then M(t, t0) is invertible for all t, and the unique solution to the ODE is

#»x(t) = M(t, t0)
#»x0 .

Proof. Straightforward computation.
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Corollary 13.4. Consider

#»x ′(t) = A(t) #»x(t) +
#»

b (t), #»x(t0) = #»x0 .

If we let M(t, s) be as in the theorem above, then the unique solution to this ODE is

#»x(t) = M(t, t0)
#»x0 +

∫ t

t0

M(t, s)
#»

b (s) ds.

Proof. Observe by definition of M(t, s) that

M(s, t) = M(t, s)−1,
d

dt
M(t, s) = AM(t, s), M(t, t) = 1.

Now, by the chain rule, for any invertible matrix T

0 =
d

dt
(1) =

d

dt
(TT−1) =

dT

dt
T−1 + T

d

dt
(T−1),

and so
d

dt
(T−1) = −T−1dT

dt
T−1.

With this, use the chain rule to see that

d

dt
(M(t0, t)

#»x(t)) =
d

dt
(M(t, t0)

−1 #»x(t)) = M(t0, t)(
#»x ′(t)−A(t) #»x(t)).

This tells us that
d

dt
(M(t0, t)

#»x(t)) = M(t0, t)
#»

b (t).

Integrate both sides from t0 to t to see that

#»x(t) = M(t, t0)
#»x0 +M(t, t0)

∫ t

t0

M(t0, s)
#»

b (s) ds

Since M(t, t0)M(t0, s) = M(t, s), this gives us what we want.

This theorem is only useful in practice if we can find n linearly independent solutions to our
ODE. Unfortunately, this is the only part of the course that does not have an explicit method. In
general it is very difficult, and we will learn more about finding such solutions in the next lecture for
the case of second order ODEs. One should now review the types of ODEs where we have methods
to find solutions, such as the ones in Lecture 10. We simplify some of them here for second-order
ODEs, since this is what we are mostly dealing with.

Example 13.5. A constant-coefficient ODE of the form

x′′(t) + bx′(t) + cx(t) = 0

can be solved by considering the characteristic equation

λ2 + bλ+ c = 0.

The solution to this equation is, of course,

λ =
−b±

√
b2 − 4c

2
.

We now have three cases:

57



• if
√
b2 − 4c > 0, then the solution is

x(t) = c1e
−b+
√
b2−4c
2

t + c2e
−b−
√
b2−4c
2

)t.

• if
√
b2 − 4c = 0, then the solution is

x(t) = c1e
− b

2
t + c2te

− b
2
t.

• if
√
b2 − 4c < 0, then the solution is

x(t) = c1e
− b

2
t cos(

√
b2 − 4c

2
t) + c1e

− b
2
t sin(

√
b2 − 4c

2
t).

Example 13.6. An ODE of the form

t2x′′(t) + btx′(t) + cx(t) = 0

with b, c constants can be solved by considering x(t) = tα. If we substitute this in, then we get

α2 + (b− 1)α+ c = 0.

Thus

α =
−(b− 1)±

√
(b− 1)2 − 4c

2
,

and we have three cases:
• if

√
(b− 1)2 − 4c > 0, then the solution is

x(t) = c1t
−(b−1)±

√
(b−1)2−4c
2 + c2t

−(b−1)±
√

(b−1)2−4c
2 .

• if
√

(b− 1)2 − 4c = 0, then the solution is

x(t) = c1t
− (b−1)

2 + c1(ln t)t
− (b−1)

2 .

• if
√

(b− 1)2 − 4c < 0, then the solution is

x(t) = c1t
− (b−1)

2 cos(

√
(b− 1)2 − 4c

2
lnx) + c1t

− (b−1)
2 sin(

√
(b− 1)2 − 4c

2
lnx).

58



14 Lecture 14 – Application to Second Order ODEs Part 1

This lecture is a series of carefully worked-out examples based on the previous lecture, applied to
the case of second order linear ODEs. After dividing by the leading coefficient, we consider ODEs
of the form

y′′(t) + p(t)y′(t) + q(t)y(t) = r(t).

The idea to solve this equation is to find two linearly independent solutions y1(t) and y2(t) to the
homogenized equation

y′′(t) + p(t)y′(t) + q(t)y(t) = 0,

and find a particular solution yp(t) to the original ODE. Then the general solution will be

y(t) = c1y1(t) + c2y2(t) + yp(t).

There is no general recipe to find y1(t), but we can give recipes for y2(t) and yp(t) after finding
y1(t). Of course, one can also guess for y2(t) and yp(t) if the ODE is simple enough.

14.1 Finding Solutions

As we have said a few times, finding a solution to

y′′(t) + p(t)y′(t) + q(t)y(t) = 0

is the only part of the course without a good recipe. In the previous lecture (see also Lecture 10
for the general case) we considered:
• the characteristic polynomial method when p(t) and q(t) are constants;
• Cauchy-Euler when p(t) = bt−1 and q(t) = ct−2.

If both p(t) and q(t) are trigonometric functions, we will try to guess a trigonometric solution.
Another example where one can try to guess for a solution is an ODE where both p(t) and q(t) are
polynomials in t. For this kind of equations, we guess a solution of the form h(t) or eh(t), where
h(t) is another polynomial in t.

Example 14.1. A solution to (1− t2)x′′(t)− 2tx′(t) + 2x(t) = 0 is x(t) = t.

Example 14.2. A solution to y′′ − 4ty′ + (4t2 − 2)y = 0 is x(t) = et
2
.

Although we will see a recipe for finding a particular solution to

y′′(t) + p(t)y′(t) + q(t)y(t) = r(t),

we can sometimes guess for the particular solution if the ODE is easy enough. In the following
examples we will take note of the following easy proposition.

Proposition 14.3. For i = 1, 2, if yp,i(t) is a particular solution to

y′′(t) + p(t)y′(t) + q(t)y(t) = ri(t),

then yp,1(t) + yp,2(t) is a particular solution to

y′′(t) + p(t)y′(t) + q(t)y(t) = r1(t) + r2(t).

Proof. Clear.
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The rule of thumb for guessing particular solutions are as follow:
• if r(t) has an exponential function, put an exponential function in your guess,
• if r(t) has a sin or a cos function, put a sum of sin and cos in your guess,,
• if r(t) has a polynomial function, put a polynomial function of the same degree in your guess,,
• if r(t) is a sum of functions, try to use the proposition above.

Example 14.4. A solution to y′′ + y = t is y(t) = t.

Example 14.5. A solution to y′′ − 5y′ + 6y = et is y(t) = et/2.

Example 14.6. A solution to y′′ − 4y′ − 12y = tet is y(t) = − 1
36(3t+ 1)e4t.

Example 14.7. A solution to y′′−4y′−12y = 3e5t+sin(2t) is y(t) = −3
7e

5t+ 1
40 cos(2t)− 1

20 sin(2t).

14.2 Duhamel’s Formula in This Case

The following theorem is Duhamel’s Formula for

y′′(t) + p(t)y′(t) + q(t)y(t) = r(t).

After finding one solution to the equation y′′(t)+p(t)y′(t)+q(t)y(t) = 0, it tells us how to completely
solve this kind of differential equation.

Theorem 14.8 (Variation of Parameters). Consider the differential solution

y′′(t) + p(t)y′(t) + q(t)y(t) = r(t).

(a) Let y1(t) be a solution to the equation y′′(t) + p(t)y′(t) + q(t)y(t) = 0. Then the general
solution to this differential equation is y0(t) = c1y1(t) + c2y2(t), where

y2(t) = y1(t)

∫ t

t0

1

y1(t)2
e−P (t) dt

and P (t) is an antiderivative of p(t).
(b) The general solution to y′′(t) + p(t)y′(t) + q(t)y(t) = r(t) is

y(t) = y0(t) + yp(t),

where y0(t) = c1y1(t) + c2y2(t) is the solution found in part (a), and

yp(t) =

∫ t

t0

y1(s)y2(t)− y2(s)y1(t)
y1(s)y′2(s)− y2(s)y′1(s)

r(s) ds.

(c) If we impose initial conditions y(t0) = α and y′(t0) = β, then the coefficients c1 and c2 are
uniquely determined by

c1 =
αy′2(t0)− βy2(t0)

y1(t0)y′2(t0)− y2(t0)y′1(t0)
, c2 =

−αy′1(t0) + βy1(t0)

y1(t0)y′2(t0)− y2(t0)y′1(t0)
.

Proof. We know the space of solutions must be 2-dimensional from the previous lecture. The rest
follows by computation.

As we have seen, in practice one does not need to use the above proposition in its entirety; one
can sometimes guess for both y1(t) and y2(t), and even for yp(t) if it is simple enough.
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Example 14.9. Consider the ODE

y′′(t) + t−1y′(t)− t−2y(t) = t2, y(1) = 1, y′(1) = −1.

Two linearly independent solutions to the homogenized equation are y1(t) = t and y2(t) = t−1.
Plugging this into the variation of parameters formula,

yp(t) =
2t5 − 5t2 + 3

30t
.

If we substitute in the initial conditions (we don’t have to use the previous theorem here), the
solution we seek is

y(t) = t−1 +
2t5 − 5t2 + 3

30t
.

Of course, we could have solved this by a Cauchy-Euler computation.

Example 14.10. Consider the ODE

2y′′ + 18y = 6 tan(3t).

A computation tells us that

y(t) = c1 cos(3t) + c2 sin(3t)− 1

3
cos(3t) ln

∣∣∣∣1 + sin(3t)

1− sin(3t)

∣∣∣∣
Example 14.11. Consider the ODE

x′′(t) = −kx(t) + f(t)

where k is a positive constant. From the previous lecture we know that two homogeneous solutions
are x1(t) = cos(

√
kt) and x2(t) = sin(

√
kt). By the variation of parameters formula, a particular

solution is

xp(t) =
1√
k

∫ t

t0

sin(
√
k(t− s))f(s) ds.
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15 Lecture 15 – Application to Second Order ODEs Part 2

In this lecture we discuss the linear algebra required to understand an important kind of second
order ODE called the mechanical oscillation equation. This is a higher-dimensional analog of
Hooke’s Law for mechanical spring.

15.1 Inner Products and Orthogonality

Again let F be either R or C. Recall that the inner product on Fn is defined by

〈 #»v , #»w〉 = v1w1 + · · ·+ vnwn.

(If F is the field of real numbers, then 〈 #»v , #»w〉 = v1w1 + · · ·+ vnwn.) If A is an n× n matrix with
coefficients in F , then it is not hard to see that

〈 #»x , A #»x〉 = #»x∗A #»x and 〈Av,w〉 = 〈v,A∗w〉.

For any matrix M we write M∗ = M t, where M t is the transpose of M , and M t is the matrix
obtained by complex conjugating every entry in M t. (If M is a real matrix then M∗ = M t.)

Definition 15.1. Let A be an n× n complex matrix.
• A is unitary if A∗A = I.
• A is normal if A∗A = AA∗.
• A is Hermitian if A∗ = A.
• A is positive definite if it is Hermitian and 〈 #»x , A #»x〉 > 0 for all nonzero vectors #»x .

The Spectral Theorem below guarantees that the definition for positive definiteness makes sense
(since the theorem tells us that 〈 #»x , A #»x〉 is a real number for Hermitian matrices A). We have the
exact same definitions if A is real, but with slightly different names. For clarity let us repeat them.

Definition 15.2. Let A be an n× n real matrix.
• A is orthogonal if AtA = I.
• A is normal if AtA = AAt.
• A is symmetric if At = A.
• A is positive definite if it is symmetric and 〈 #»x , A #»x〉 > 0 for all nonzero vectors #»x .

Lemma 15.3. Every n × n matrix A can be written as A = UTU∗, where U is a unitary matrix
and T is upper-triangular.

Proof. Use the same proof as part (a) of Lemma 7.2 in Lecture 8. One can make sure U is unitary
by demanding the eigenvectors we pick be of norm one.

We now come to the Spectral Theorem, which together with the Jordan Canonical Form are
the two main theorems in linear algebra. The Spectral Theorem applies only to normal matrices,
and is purely an existence theorem (so it does not tell us how to compute anything). Consequently,
or coincidentally, it has a much easier proof.

Theorem 15.4 (Spectral Theorem). Let A be an n× n complex matrix.
(a) A is normal if and only if it is unitarily diagonalizable, i.e. A = UDU∗ for some unitary

matrix U and diagonal matrix D.
(b) A is Hermitian if and only if it is unitarily diagonalizable with all eigenvalues real. Hence

A = UDU∗ for some unitary matrix U and real diagonal matrix D.
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(c) A is real symmetric if and only if it is unitarily diagonalizable with real eigenvalues and real
eigenvectors. Hence A = UDUT for some orthogonal matrix U and real diagonal matrix D.

Proof. (a) The previous lemma tells us that A = UTU∗ for some unitary matrix U and upper-
triangular matrix T . As A is normal, this tells us that TT ∗ = T ∗T , forcing T to be diagonal.

(b) Let v be an eigenvector with eigenvalue λ. Then

λ〈v, v〉 = 〈Av, v〉 = 〈v,A∗v〉 = 〈v,Av〉 = λ〈v, v〉.

so λ must be real.
(c) Part (b) tells us that every eigenvalue λ must be real. Since A is a real matrix, this implies

that ker(A− λI) > 0, so it has positive real dimension.

Corollary 15.5. A Hermitian matrix has a basis of eigenvectors with real eigenvalues.

Proof. Direct from the Spectral Theorem.

The Spectral Theorem tells us that Hermitian matrices do not have generalized eigenvectors,
so we do not have to think about Jordan Canonical Forms! In preparation for the next lecture we
want to obtain a good basis of eigenvectors, called an orthonormal basis. Recall that the norm of
a vector #»v is defined to be ‖ #»v ‖ := 〈 #»v , #»v 〉1/2.

Definition 15.6. Two vectors #»v and #»w are orthogonal if 〈 #»v , #»w〉 = 0. A set of vectors v1, . . . , vn
is orthonormal if it satisfies three conditions:
• v1, . . . , vn forms a basis of Fn;
• each vi has norm 1;
• the vectors are pairwise orthogonal.

Here is an important fact about eigenvectors. It tells us that eigenvectors for different eigen-
values are orthogonal.

Proposition 15.7. Let A be a Hermitian matrix. For j = 1, 2, let vj be an eigenvector for the
eigenvalue λj, such that λ1 6= λ2. Then v1 and v2 are orthogonal.

Proof. As A is Hermitian 〈v1, Av2〉 = 〈Av1, v2〉. Thus, as the eigenvalues of A are real,

λ2〈v1, v2〉 = λ1〈v1, v2〉.

This implies 〈v1, v2〉 = 0.

How do we obtain an orthonormal basis from a given basis of eigenvectors?

Definition 15.8 (Gram-Schmidt Process). Let v1, . . . , vm be a set of linearly independent vectors
in Fn. This iterative process produces an orthonormal set of vectors b1, . . . , bm as follows.
• Set

u1 = v1 and b1 =
u1
‖u1‖

.

• Now set

u2 = v2 −
〈v2, u1〉
〈u1, u1〉

u1 and b2 =
u2
‖u2‖

.

• Iterating, set

uj = vj −
〈vj , u1〉
〈u1, u1〉

u1 − · · · −
〈vj , uj−1〉
〈uj−1, uj−1〉

uj−1 and bj =
uj
‖uj‖

.
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It can be easily checked that 〈bi, bj〉 = 0 for i 6= j.

Proposition 15.9. A Hermitian matrix has an orthonormal basis of eigenvectors with real eigen-
values.

Proof. We know that eigenvectors for different eigenvalues are already orthogonal, so we just need
to apply the Grams-Schmidt Process to a basis for every eigenspace.

Example 15.10. Consider the vectors

v1 = (1, 2, 3, 0), v2 = (1, 2, 0, 0), v3 = (1, 0, 0, 1).

The Gram-Schmidt Process tells us that

u1 = (1, 2, 3, 0), u2 = (
9

14
,
9

7
,−15

14
, 0), u3 = (

4

5
,−2

5
, 0, 1),

and

b1 =
1√
14

(1, 2, 3, 0), b2 =
1

3
√

70
(9, 18,−15, 0), b3 =

1

3
√

5
(4,−2, 0, 5).

15.2 Positive Definite Matrices

The type of matrix that comes into play for mechanical oscillations are positive definite matrices.
Henceforth let us note some facts for these kinds of matrices.

Proposition 15.11. Let A be a positive definite n× n matrix.
• Every eigenvalue of A is positive.
• A is an invertible matrix.
• If C is another invertible n× n matrix, then C∗AC is also positive definite.

Proof. (a) The Spectral Theorem tells us that any eigenvalue λ of A is real. Pick an eigenvector #»v
for λ. Then 〈 #»v , A #»v 〉 > 0. But

〈 #»v , A #»v 〉 = 〈 #»v , λ #»v 〉 = λ〈 #»v , #»v 〉

Since #»v is nonzero, this implies λ > 0.
(b) It suffices to show that A = 0. Suppose #»x satisfies A #»x = 0. Then 〈 #»x , A #»x〉 = 0. By

positive definiteness this forces #»x = 0, as desired.
(c) Since C is invertible, any nonzero vector #»x satisfies C #»x 6= 0. Therefore

〈 #»x , C∗AC #»x〉 = #»x∗C∗AC #»x = (C #»x)∗AC #»x = 〈C #»x , AC #»x〉 > 0

by positive definiteness of A.

Here is a criteria to check if a matrix is positive definite.

Proposition 15.12. An n×n matrix A is positive definite if it is Hermitian and every eigenvalue
is positive.

Proof. Let b1, . . . , bn be an orthonormal basis of eigenvectors with positive eigenvalues λ1, . . . , λn
(the eigenvalues might not be distinct). Let #»x be a nonzero vector. Then it is easy to see that

#»x = 〈 #»x , b1〉b1 + · · ·+ 〈 #»x , bn〉bn.
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Thus a computation tells us

〈 #»x , A #»x〉 = λ1|〈 #»x , b1〉|2 + · · ·+ λn|〈 #»x , bn〉|2.

Since the eigenvalues are positive, the expression above is nonnegative. It is zero exactly when
〈 #»x , bj〉 = 0 for all j, implying #»x = 0. Therefore A is positive definite.

Example 15.13. Consider the matrix [
17 8
8 17

]
.

This matrix is symmetric with characteristic polynomial (x− 25)(x− 9), so it is positive definite.

A key fact about positive definite matrices lies in the next theorem, of which we will not give
a proof of, but we will use repeatedly in the next lecture.

Theorem 15.14. Let A be a positive definite matrix. Then there is a unique positive definite
square root A1/2 of A. In fact, the square root can be constructed as follows.
• Let b1, . . . , bn be an orthonormal basis of eigenvectors with positive eigenvalues λ1, . . . , λn.
• Write

U =
[
b1 b2 · · · bn

]
and D1/2 =


√
λ1 0 · · · 0

0
√
λ2

. . .
...

...
. . .

. . . 0
0 · · · 0

√
λn

 .

• Then A1/2 = UD1/2U∗.

Proof. Omitted; the existence follows from the Spectral Theorem, and the uniqueness is an ele-
mentary but slightly tricky argument that is not relevant to the course.

Example 15.15. Again consider the positive matrix

A =

[
17 8
8 17

]
with eigenvalues 25 and 9, and corresponding orthonormal basis of eigenvectors

b1 =
1√
2

(1, 1) and b2 =
1√
2

(1,−1).

Then

U =
1√
2

[
1 1
1 −1

]
, D1/2 =

[
5 0
0 3

]
, A1/2 =

[
4 1
1 4

]
.
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16 Lecture 16 – Application to Second Order ODEs Part 3

In this lecture we introduce the mechanical oscillation equation.

16.1 Oscillations

Definition 16.1. A mechanical oscillation equation is an equation

M #»x ′′(t) = −A #»x(t)

where M and A are positive definite matrices.

Proposition 16.2. Any mechanical oscillation equation as above can be converted to

#»y ′′(t) = −K #»y (t),

where #»y (t) = M1/2 #»x(t) and K = M−1/2AM−1/2.

Proof. Computation. Note that everything written above makes sense by the previous lecture.

Hence we now concentrate on understanding a mechanical oscillation equation of the form

#»y ′′(t) = −K #»y (t), #»y (0) = (a1, . . . , an), #»y ′(0) = (b1, . . . , bn).

(For convenience we will just let time start from zero.)
Let b1, . . . , bn be an orthonormal basis of eigenvectors of K with positive eigenvalues λ1, . . . , λn.

By taking the dot product of the equation with bj , one immediately sees that

〈bj , #»y (t)〉′′ = −λj〈bj , #»y (t)〉.

Hence, by defining the normal modes wj = 〈bj , #»y (t)〉, one needs to solve

w′′j (t) = −λjwj(t), wj(0) = 〈bj , #»y (0)〉, w′j(0) = 〈bj , #»y ′(0)〉.

This is the Hooke’s Law equation that we solved in Lecture 10! Recall that the solution to this
equation is

wj(t) = wj(0) cos(
√
λjt) +

w′j(0)√
λj

sin(
√
λjt).

The solution #»y (t) can then be obtained by

#»y (t) = w1(t)b1 + · · ·+ wn(t)bn,

and the actual solution we want is #»x(t) = M−1/2 #»y (t).

Example 16.3. Consider the system of equation

4x′′1(t) = −8x1(t)− 4x2(t)

x′′2(t) = −4x1(t)− 5x2(t)

with initial conditions x1(0) = −1, x2(0) = 1, x′1(0) = 1/2, x′2(0) = 2. If we let

M =

[
4 0
0 1

]
, A =

[
8 4
4 5

]
, #»x(t) = (x1(t), x2(t)),
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then the equation above is the mechanical oscillation equation

M #»x ′′(t) = −A #»x(t), #»x(0) = (−1, 1), #»x ′(0) = (
1

2
, 2).

We see that

M1/2 =

[
2 0
0 1

]
so we do the conversion #»y (t) = M1/2 #»x(t) and K = M−1/2AM−1/2 to get

K =

[
2 2
2 5

]
, #»y (t) = (−2, 1), #»y ′(t) = (1, 2).

Thus we now need to solve for

#»y ′′(t) = −K #»y (t), #»y (0) = (−2, 1), #»y ′(0) = (1, 2).

The eigenvalues for K are 1 and 6, and we choose corresponding orthonormal basis of eigenvectors

b1 =
1√
5

(−2, 1), b2 =
1√
5

(1, 2).

By following the steps above one sees that

#»y (t) = cos(t)(−2, 1) +
1√
6

sin(
√

6t)(1, 2) = (−2 cos(t) +
1√
6

sin(
√

6t), cos(t) + 2 sin(
√

6t)).

The solution we seek is then #»x(t) = M−1/2 #»y (t), so

#»x(t) =

[
1/2 0
0 1

] [
sin(
√

6t)− 2 cos(t)

2 sin(
√

6t) + cos(t)

]
= (− cos(t) +

1

2
√

6
sin(
√

6t), cos(t) + 2 sin(
√

6t)).

16.2 Driven Oscillations

Definition 16.4. A driven mechanical oscillation equation with forcing term
#»

f (t) is an equation

M #»x ′′(t) = −A #»x(t) +
#»

f (t)

where M and A are positive definite matrices.

Proposition 16.5. Any driven mechanical oscillation equation as above can be converted to

#»y ′′(t) = −K #»y (t) + #»g (t),

where #»y (t) = M1/2 #»x(t) and K = M−1/2AM−1/2 and #»g (t) = M−1/2
#»

f (t).

Proof. Computation.

Just as before we now concentrate on understanding a mechanical oscillation equation of the
form

#»y ′′(t) = −K #»y (t) + #»g (t), #»y (0) = (a1, . . . , an), #»y ′(0) = (b1, . . . , bn).

Let b1, . . . , bn be an orthonormal basis of eigenvectors of K with positive eigenvalues λ1, . . . , λn.
By taking the dot product of the equation with bj , one immediately sees that

〈bj , #»y (t)〉′′ = −λj〈bj , #»y (t)〉.
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Hence, by defining wj = 〈bj , #»y (t)〉 and gj(t) = 〈bj , #»g (t)〉, one needs to solve

w′′j (t) = −λjwj(t) + gj(t), wj(0) = 〈bj , #»y (0)〉, w′j(0) = 〈bj , #»y ′(0)〉.

We have solved this equation using Duhamel’s Formula in Lecture 14:

wj(t) = wj(0) cos(
√
λjt) +

w′j(0)√
λj

sin(
√
λjt) +

1√
λj

∫ t

0
sin(

√
λj(t− s))gj(s) ds.

The solution #»y (t) can then be obtained by

#»y (t) = w1(t)b1 + · · ·+ wn(t)bn,

and the actual solution we want is #»x(t) = M−1/2 #»y (t).
There is a subtlety for driven mechanical oscillations: the normal modes wj(t) might demon-

strate resonance. This happens when gj(t) models a periodic driving force in the form of some
constant nonzero multiple of cos(ωt+ φ0). Thus, let us now look more closely at∫ t

0
sin(

√
λj(t− s)) cos(ωs+ φ0) ds.

If we do integration using trigonometric identities, this equals

cos(ωt+ φ0)− cos(
√
λjt+ φ0)

2(
√
λj − ω)

+
cos(ωt+ φ0)− cos(−

√
λjt+ φ0)

2(
√
λj + ω)

.

Notice that this function is defined everywhere except at ω =
√
λj . If we perform the limit for the

first term we see using L’Hopital’s Rule that

lim
ω→
√
λj

cos(ωt+ φ0)− cos(
√
λjt+ φ0)

2(
√
λj − ω)

=
1

2
t sin(

√
λjt+ φ0).

Thus wj(t) grows without bound if ω =
√
λj . We now make a definition.

Definition 16.6. If gj(t) is a nonzero constant multiple of cos(ωt+φ0), then the driven mechanical
oscillation equation demonstrates resonance at ω =

√
λj .

Resonance is a terrifying thing. For example, it caused the collapse of the Tacoma Narrows
Bridge. A bad experiment to try at home is to get an oscillator to produce sound at the natural
frequency of a wine glass.

Example 16.7. Consider

#»y ′′(t) = −K #»y (t) +
#»

f (t), #»y (0) = (0, 0), #»y ′(0) = (1, 2).

with

K =

[
2 2
2 5

]
,

#»

f (t) = cos(ωt)(−2, 1).

As before the eigenvalues for K are 1 and 6. After some computations we will get the ODEs for
the normal modes:

w′′1(t) = −w1(t) +
√

5 cos(ωt), w1(0) = w′1(0) = 0,

w′′2(t) = −6w2(t), w2(0) = 0, w′2(0) =
√

5.

These ODE’s can be solved using the equations above to get #»x(t). For this ODE one sees that
there is resonance at ω = 1, but not at ω =

√
6.
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17 Lecture 17 – The Euler-Lagrange Equation

This lecture discusses the Euler-Lagrange Equation, which gives stationary solutions for special
kinds of functionals important in physical applications. We will assume all functions are nice
enough, and focus on examples. In particular, we will not sketch a proof of the Euler-Lagrange
Equation (it is a long but uncomplicated exercise in real analysis).

17.1 Statement of the Euler-Lagrange Equation

We start by fixing notations. Let #»x(t) be any t-valued vector, and let #»v (t) = #»x ′(t). Recall that,
if #»x(t) = (x1(t), . . . , xn(t)), then

∇ #»xf ( #»x(t), #»v (t), t) =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
,

and similarly for ∇ #»v f ( #»x(t), #»v (t), t).

Theorem 17.1 (Euler-Lagrange). If a function #»x(t) minimizes or maximizes a functional

I( #»x) =

∫ b

a
f ( #»x(t), #»v (t), t) dt

then

∇ #»xf ( #»x(t), #»v (t), t) =
d

dt
∇ #»v f ( #»x(t), #»v (t), t) . �

Corollary 17.2. If f depends only on #»x(t) and #»v (t), and not t, then the Euler-Lagrange Equation
reduces to

d

dt

[
#»x ′(t)∇ #»v f( #»x(t), #»x ′(t))− f( #»x(t), #»x ′(t))

]
= 0.

Proof. Observe that

d

dt

[
#»x ′(t)∇ #»v f( #»x(t), #»x ′(t))− f( #»x(t), #»x ′(t))

]
= #»x ′(t)

[
d

dt
∇ #»v f ( #»x(t), #»v (t), t)−∇ #»xf ( #»x(t), #»v (t), t)

]
.

The corollary now follows immediately from the Euler-Lagrange Equation.

17.2 Examples

Example 17.3. Let us try to find f : [0, 1]−→R such that f(0) = 0 and f(1) = 1 and such that
the arc length ∫ 1

0

√
1 + (f ′(t))2 dx

is minimized. Applying the Euler-Lagrange Equation tells us that

0 =
d

dt

(
f ′(t)√

1 + (f ′(t))2

)
so

f ′(t)√
1 + (f ′(t))2

= c

69



for some constant c. An elementary manipulation tells us that

f ′(t) =
c√

1− c2
:= a,

so f(t) = at+ b for some other constant b. Since f(0) = 0 and f(1) = 1, this means f(t) = t is the
minimizing function.

Example 17.4. Consider the functional

I( #»x) =
1

2

∫ 1

0
‖ #»x ′(t)‖2 dt.

The Euler-Lagrange Equation in this case is

0 =
d

dt
#»x ′(t),

or #»x ′′(t) = 0. If we fix boundary conditions #»x(0) = #  »α0 and #»x(1) = #  »α1, this means the solution to
the Euler-Lagrange Equation is the straight line through #  »α0 and #  »α1.

Example 17.5. Consider the functional

I(x) =

∫ 1

0
t
(
x′(t)

)2
dt.

The Euler-Lagrange Equation is
0 = 2tx′(t),

so we require tx′(t) = c. Hence
x(t) = c ln t+ b.

Let us now impose boundary conditions f(0) = α and f(1) = β. For x(t) to be defined at 0 one
must then have c = 0, but this gives us no possible values for b. Hence there is no minimizing
function for this Euler-Lagrange Equation.

Example 17.6. Consider the functional

I(x) =

∫ L

0
(x′(t))2 − (x(t))2 − x(t) sin t dt

with boundary conditions x(0) = x(π/4) = 0. The Euler-Lagrange Equation is

−2x(t)− sin t =
d

dt
(2x′(t))

or in other words 2x′′ + 2x = − sin t. By Duhamel’s Formula, or by observation,

x(t) = c1 sin t+ c2 cos t+
1

4
t cos t.

Applying the boundary conditions tells us that

x(t) =
1

4
t cos t− π

16
sin t.
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17.3 The Brachistochrone Problem

Let p0 = (x0, y0) = (0, 0), and pick a point p1 = (x1, y1) in the bottom right quadrant of the plane.
The Brachistochrone Problems asks the following.

Question. Find the shape of the wire y(x) that minimizes the time a bead slides from p0 to p1.

Note that, by physical reasons,
• y(x) and y′(x) should be nonpositive, and
• the only force acting on the bead is gravity g.

The first step is to derive the functional that models travel time along y(x). Let m be the mass of
the bead. When the bead slides to height y < 0, the potential energy that has been converted to
kinetic energy is

−mgy.

As the formula for kinetic energy is mv2/2, this implies the speed of the bead at this height is

v =
√
−2gy,

Recall that the time to travel from p0 to p1 is given by the path integral∫ p1

p0

1

v(x)
ds,

where s is the arc length. Since

ds =
√
dx2 + dy2 =

√
1 + y′(x)2 dx

tells us that the time it takes to move along this interval is∫ x1

0

√
1 + (y′(x))2√
−2gy(x)

dx.

This is the functional that we are looking to minimize. By Corollary 17.2,

y′(x)
y′(x)√

−2gy(x)
√

1 + (y′(x))2
−
√

1 + (y′(x))2√
−2gy(x)

= c

for some constant c. A manipulation gives us the equation

y(x)[1 + (y′(x))2] = C

for some other constant C. Note that C is necessarily a negative constant. Recalling that y′ should
be a decreasing function, this implies

y′(x) = −
(
C − y
y

)1/2

.

By separation of variables

dx = −
(

y

C − y

)1/2

dy.

We now change variables y = C sin2 φ, implying

dx = −2C sin2 φdφ = −C(1− cos 2φ) dφ.
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After integrating

x = −C
2

(2φ− sin 2φ) +B.

By substituting x0 = 0, this implies B = 0. Hence, if we let r = −C/2 and θ = 2φ, then a
parametric equation for y(x) is

x(θ) = r(θ − sin θ), y(θ) = −r(1− cos θ).

This is the equation for a cycloid! In other words, the cycloid minimizes time (and not the straight
line or some sort of parabola/hyperbola, disagreeing with common intuition).
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18 Lecture 18 – Final Review Part 1

18.1 Final Review Part 1

A first review of lectures 1 to 17 was given during this lecture. You should be comfortable with the
topics below; this list is also repeated in the next lecture.

Matrices

• Compute inverses using cofactor expansion or the Cayley-Hamilton Theorem
• Compute powers and exponentials using Jordan Canonical Form or Buchheim’s Algorithm
• Exponentiation formulas for nilpotent, diagonalizable, and small matrices
• Positive definite matrices

First Order Constant Linear ODEs

• An application of invariant subspaces
• Reduction of order
• Linearization and stability

Higher Order Linear ODEs

• Tricks for finding linearly independent solutions
• Duhamel’s Formula
• Oscillations and resonance

Other Aspects of ODEs

• The Euler-Lagrange Equation
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19 Lecture 19 – Final Review Part 2

19.1 Final Review Part 2

A second review of lectures 1 to 17 was given during this lecture. You should be comfortable with
the topics below; this list is also repeated in the next lecture.

Matrices

• Compute inverses using cofactor expansion or the Cayley-Hamilton Theorem
• Compute powers and exponentials using Jordan Canonical Form or Buchheim’s Algorithm
• Exponentiation formulas for nilpotent, diagonalizable, and small matrices
• Positive definite matrices

First Order Constant Linear ODEs

• An application of invariant subspaces
• Reduction of order
• Linearization and stability

Higher Order Linear ODEs

• Tricks for finding linearly independent solutions
• Duhamel’s Formula
• Oscillations and resonance

Other Aspects of ODEs

• The Euler-Lagrange Equation
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20 Lecture 20 – Final

20.1 Final

The final was given during this lecture; see subsection 21.10. Below is a non-exhaustive list of
things that you should know for the final.

Matrices

• Compute inverses using cofactor expansion or the Cayley-Hamilton Theorem
• Compute powers and exponentials using Jordan Canonical Form or Buchheim’s Algorithm
• Exponentiation formulas for nilpotent, diagonalizable, and small matrices
• Positive definite matrices

First Order Constant Linear ODEs

• An application of invariant subspaces
• Reduction of order
• Linearization and stability

Higher Order Linear ODEs

• Tricks for finding linearly independent solutions
• Duhamel’s Formula
• Oscillations and resonance

Other Aspects of ODEs

• The Euler-Lagrange Equation

75



21 Syllabus, Homework, and Exams

21.1 Syllabus

Course: Math 240 (Calculus, Part III)
Instructor: Yao-Rui
Email: yeya@sas.upenn.edu
Webpage: Penn Canvas
Lectures: MTWR, 13:00 – 15:10, 3W2 DRL, from 2019-07-05 to 2019-08-09
First Day of Class: 2019-07-08
Office Hours: Immediately after each lecture

Overview. This course covers applications of linear algebra to solving differential equations. We
will focus our study to first and second order ordinary differential equations (ODEs). The goal by
the end of this course is not only to know how to solve various kinds of differential equations, but
also to gain a working knowledge of linear algebra.

Prerequisites. I will assume Calculus I and II. This varies from institution to institution, but
here at Penn this means the basics of univariate and multivariate calculus. One definitely has to
be comfortable with elementary computations in calculus, but we will not use some stuff usually
covered at the end of Calculus II (Stokes’ Theorem comes to mind).

Text. I will not be following any textbook closely. Here are some references that I will be using to
help develop the course.
• Past Calculus Finals, from the University of Pennsylvania.
• Differential Equations and Linear Algebra, by Stephen W. Goode and Scott A. Annin.
• Ordinary Differential Equations, by Wolfgang Walter.
• Linear Algebra, by Kenneth Hoffman and Ray Kunze.

Please do not spend money buying math books that are unreasonably expensive. I will post every-
thing we need for this class on the course webpage.

Grading. The course will be graded accordingly:
• Five Homework (25 points),
• One Midterm (35 points),
• One Final (40 points),

for a maximum of 100 points. In addition, there is an opportunity to submit an extra credit
assignment. Due dates are summarized below.
• Homework 1: July 11
• Homework 2: July 17
• Homework 3: July 23
• Midterm: July 25
• Homework 4: July 31
• Homework 5: August 6
• Final: August 8
• Extra Credit: Any lecture of your choice

Homework must be turned in, hardcopy, at the start of the class, and late homework will not be
accepted. There will not be any makeup exams; the final will count for 75 points if you have to miss
the midterm, and I hope no one misses the final. The course grade will be curved appropriately.
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More about the Homework. This course emphasizes computational techniques heavily, so one
should practice as much as one needs in order to be comfortable with the material. Thus the home-
work constitutes a significant part of the grade. The Math 240 Past Finals from the University of
Pennsylvania, from Fall 2014 onwards, is another good place to get more practice problems.

More about the Exams. Both exams will be written, and you will have the entire lecture to work
on it. As I do not believe in memorizing equations, you are allowed one single-sided letter-sized
cheat sheet for each exam. The exams will be similar in spirit to the homework.

More about the Extra Credit. If you choose to do the extra credit assignment, you can turn
it in during any lecture before (but not including) the final one. I may ask you to present your
solutions during office hours, so be prepared.

Collaboration and Academic Integrity. If you have any questions or difficulties with anything
at any point during the course, please discuss them with your classmates or talk to me during office
hours. Working together on the homework is encouraged, but anything that is handed in must be
written up individually. Any violation of academic integrity will result in serious consequences.

Tentative Schedule. Here is a planned week-by-week schedule of lectures.
• Week 1: Introduction; Matrices and Linear Maps; Eigenstuff.
• Week 2: Matrix Exponentials; First Order ODEs.
• Week 3: First Order ODEs Continued; Equilibrium Points; Review; Midterm.
• Week 4: Flows; Second Order ODEs.
• Week 5: The Euler-Lagrange Equation; Review; Final.

21.2 Homework 1

This homework reviews lectures 1 and 2. The last problem is optional and not for credit.

Problem 1. Solve the radioactive decay equation N ′ = −kN with N(0) = 10. What is the value
of k if N(3) = 500?

Problem 2. Solve x2x′ = 5x3 + e−t with initial condition x(0) = 2.

Problem 3. Find the general solution of x′ = −x + sin t. Also determine an initial condition
x(π/2) = ι such that the resulting solution is periodic.

Problem 4. Find the general solution of x′ = x2 − x− 2.

Problem 5. This problem is related to row echelon forms.
(a) Use row reduction to solve the system of equations

x+ 2y + 3z = 6

2y + 3z = 5

x+ 4y + 6z = 11.

(b) Do the same with

x+ 2y + 3z = 6

2y + 3z = 5

x+ 4y + 7z = 11.
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(c) Do the same with

x+ 2y + 3z = 6

2y + 3z = 5

x+ 4y + 6z = 10.

Problem 6. Find the rank of the matrix 3 −1 1
−7 4 t
2 1 4

 .
Your answer should depend on t.

Problem 7. Compute the inverse of the matrix
1 0 0 1
0 1 1 2
0 0 1 −1
1 1 1 2

 .
Problem 8. Use Cramer’s Rule to solve the system of equations

2x+ 3y − z = 1

4x+ y − 3z = 8

3x− 2y + 5z = 21.

Problem *. The Hilbert matrix is the n× n matrix Hn with (i+ j − 1)−1 in the (i, j)-entry. For
example,

H4 =


1 1/2 1/3 1/4

1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

 .
In this problem we will compute detHn, and show that it is the reciprocal of an integer. (In fact
one can also compute the inverse of the Hilbert matrix and show that it has integer entries.)

(a) Define cn =
∏n
j=1 j!. Show that

detHn =
c4n

c2n−1

by doing the following steps.
• Subtract the last row of Hn from every row above it.
• Factor out all common terms from each row and column.
• Subtract the last column of Hn from every column before it.
• Factor out all common terms from each row and column.
• Do induction on n.

(b) Show that

c2n−1
c4n

= n!

2n−1∏
j=1

(
j
bj/2c

)
by induction on n. Hence detHn is the reciprocal of an integer.
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21.3 Homework 2

This homework reviews lectures 3 to 5. The last problem is optional and not for credit.

Problem 1. Compute the rank and nullity of the matrix 1 0 −1 2
2 1 2 3
−1 4 1 2

 .
Also find the image and kernel of this matrix. (Assume we are working with real numbers.)

Problem 2. Here are two problems on the interplay between linear maps and matrices.
(a) Write down the linear map with standard matrix

1 2 0 0
1 1 0 0
0 0 2 0
0 0 3 0
0 0 1 0

 .
Also write down five distinct invariant subspaces of this linear map, with explanation.

(b) Compute the change of basis matrix from (3, 1), (−2, 1) to (2, 1), (1, 4).

Problem 3. Consider the following subsets. Explain whether they are subspaces or not.
(a) S = {(x, y) in R2 satisfying y = x2}.
(b) S = {(a+ 3b+ c, b, 0) with a, b, c real numbers}.
(c) S = {(x, y, z, w) in R4 satisfying x ≤ y ≤ z}.

Problem 4. Let Pn be the (n+ 1)-dimensional vector space of polynomials with real coefficients
having degree at most n. Consider the linear map ϕ : P2 −→ P3 such that

ϕ(1 + x) = x3 − 2x, ϕ(2− x2) = 2x3 + x2 − 2, ϕ(x2 + x) = −x2 − 2x+ 1.

Compute the matrix of ϕ with respect to the bases 1, x, x2 and 1, x, x2, x3.

Problem 5. Find the eigenvalues and eigenspaces for the matrix1 −3 3
3 −5 3
6 −6 4

 .
For each eigenspace, write down a basis of eigenvectors.

Problem 6. Let a and b be complex numbers. Compute the eigenvalues and eigenspaces of[
a b

b a+ b+ b

]
.

For example, one can check that [
1 i
−i 1

]
,

with a = 1 and b = i, has eigenvalues 2 and 0, with associated eigenspaces the span of (i, 1) and
(−i, 1).
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Problem 7. Here are two conceptual problems.
(a) Let A be an 8× 8 matrix with rank(A) = 5. Show that rank(A2) ≥ 2.
(b) Show that any n× n matrix, with n odd, must have a real eigenvalue.

Problem 8. Show that the matrix 6 0 0
2 4 1
4 −4 8


has exactly one eigenvalue. Hence or otherwise compute e2A.

Problem *. In this problem we outline how one can model rotations using matrices.
(a) Using the basis vectors (1, 0) and (0, 1) in R2, write down a 2 × 2 matrix Rθ that models

a θ-degree rotation counterclockwise about the origin. Show that Rθ1Rθ2 = Rθ2Rθ1 . What
does this equality mean geometrically?

(b) Using the basis vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) in R3, write down three 3× 3 matrices that
models a θ-degree rotation counterclockwise about the x, y, and z axes respectively. If M
and N are 3-dimensional rotation matrices, is it still true that MN = NM?

(c) Show that, in both R2 and R3, the composition of two rotations that fixes the origin is still
a rotation.

21.4 Homework 3

This homework reviews lectures 6 to 8. The last problem is optional and not for credit.

Problem 1. Compute the Jordan Canonical Forms for−3 −2 1
0 −4 0
1 −2 −3

 and

−1 0 1
0 −2 4
0 0 −2

 .
Problem 2. Compute the Jordan Canonical Form for[

3 −2
1 1

]
.

Use this to compute eA and A2019. Your answers to eA and A2019 should not be imaginary.

Problem 3. Suppose A is a 3 by 3 matrix with eigenvalues 1, i,−i.
(a) Show that A80085 = A.
(b) Write down two such matrices A with real entries.

Problem 4. The Fibonacci Numbers is the sequence 1, 1, 2, 3, 5, 8, 13, . . . defined by the recurrence

Fn = Fn−1 + Fn−2, F1 = F2 = 1.

Note that we can write the recurrence in matrix notation as[
Fn
Fn−1

]
=

[
1 1
1 0

] [
Fn−1
Fn−2

]
Let A be the 2× 2 matrix above.
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(a) Show that [
Fn
Fn−1

]
=

[
1 1
1 0

]n−2 [
1
1

]
.

(b) Compute the Jordan Canonical Form for A, and use this to write down a formula for Ak.
(c) Use the above two parts to write down a formula for Fn. The formula should involve the

golden ratio.

Problem 5. Compute A1438 for

A =

 2 2 3
1 3 3
−1 −2 −2

 .
(Although the JCF for this matrix was written down in lecture, you still need to show work.)

Problem 6. Find the solution to the equation

#»x ′(t) = A #»x(t), #»x(0) = #»x0,

where

A =

−5 3 2
−8 5 4
−4 3 3

 .
Problem 7. Find the solution to the equation

#»x ′(t) = A #»x(t) + (1, 1, 1), #»x(1) = (2, 5, 3),

where

A =

−1 −1 0
0 −1 −2
0 0 −1

 .
Problem 8. Solve the differential equation

#»x ′(t) = A #»x(t), #»x(0) = (1, 1, 1, 0, 0, 0, 0),

where A is the 8× 8 matrix given by

3 2 0 5 0 0 0 0
−1 0 0 4 0 0 0 0
1 2 1 3 0 0 0 0
0 0 0 8 0 0 0 0
0 0 0 6 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 0


Problem *. A conic section is the solutions of an equation of the form

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

on the Cartesian plane. One can write this equation in terms of a matrix as[
x y

] [ A B/2
B/2 C

] [
x
y

]
+
[
D E

] [x
y

]
+ F = 0.

In this problem we seek to classify all conic sections.
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(a) First suppose B = 0 for simplicity. Give a criteria, depending on A and C, to determine if
the conic section is a parabola, hyperbola, or ellipse.

(b) Now suppose B 6= 0. Show that [
A B/2
B/2 C

]
is diagonalizable, and give a criteria depending on the determinant of this matrix to determine
if the conic section is a parabola, hyperbola, or ellipse.

(c) Show that if the conic section is a circle, then A = C and B = 0.
(d) Determine what kind of conic section

x2 + 2y2 + 2xy + x− 5y = 0

is, and sketch its graph.

21.5 Midterm Review Problems

This problem set reviews key ideas relevant to the midterm. The last problem is optional.

Problem 1. Find the general solution to

t3x′ + t2x− x2 = 2t4.

Problem 2. Consider the following matrix.
0 1 0 1
2 0 1 0
3 2 1 2
2 0 0 0


(a) Write down the linear map of this matrix, assuming it is a standard matrix.
(b) Find the rank and nullity of this matrix.
(c) Compute the image and kernel of this matrix.
(d) Is this matrix invertible?

Problem 3. Consider the matrix 2 k 0
0 3 0
0 0 k

 .
(a) Write down the linear map of this matrix, assuming it is a standard matrix.
(b) Find the rank and nullity of this matrix. Your answer should depend on k.
(c) For which values of k does the inverse matrix exist?
(d) For which values of k is the matrix diagonalizable?

Problem 4. Consider the matrix

A =

[
5 −1
4 1

]
.

Find the solution to
#»x ′(t) = A #»x(t) + (2, t), #»x(0) = (1, 1).
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Problem 5. Compute etA for

A =

3 0 0
0 4 −1
0 1 2

 and A =


2 0 0 0
−2 4 2 0
−1 0 4 1
−2 0 0 4

 .
Problem 6. Compute eA for

A =


0 1 0 0 0
1 0 −1 0 0
0 1 0 1 0
0 0 1 0 −1
0 0 0 −1 0

 .
Problem 7. Consider the system of differential equations

dx

dt
= (x2 + y)(1− x),

dy

dt
= 3x− y.

Find the equilibrium points, and discuss the kind of stability around the equilibrium points. Do
the same with the system

dx

dt
= (2 + x)(y − x),

dy

dt
= y(2 + x− x2).

Problem 8. The minimal polynomial of an n × n matrix A is the smallest degree polynomial of
the form

m(x) = xd + cd−1x
d−1 + · · ·+ c1x+ c0

such that m(A) = 0. This problem tells us that the minimal polynomial is closely related to the
Jordan canonical form of A.

(a) Show that

m(x) =
∏

eigenvalues
λ of A

(x− λI)jλ

where jλ is the maximum size among all the Jordan blocks associated to λ.
(b) Explain why the minimal polynomial of A divides the characteristic polynomial of A.

Problem *. Let b and v0 be two nonzero vectors in R3. In this problem we will solve the rotation
equation

#»x ′(t) = b× #»x(t), #»x(0) = v0,

where the multiplication symbol above denotes the cross product.
(a) Rewrite the rotation equation in the form #»x ′(t) = A #»x(t) for some square matrix A.
(b) Show that the eigenvalues of A are 0, i‖b‖, −i‖b‖.
(c) Show that

etA =
1

‖b‖2
A2 − cos(‖b‖t)

‖b‖2
A2 +

sin(‖b‖t)
‖b‖

A+ I.

Sylvester’s Formula will be useful here.
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(d) Show that the solution to the rotation equation is

#»x(t) =
1

‖b‖2
(b× (b× v0))−

cos ‖b‖
‖b‖2

(b× (b× v0)) +
sin ‖b‖
‖b‖

(b× v0) + v0.

(e) Let

v⊥0 = v0 −
v0 · b
‖b‖2

b

be the orthonormal projection of v0 onto b. Consider the set of orthonormal basis

u1 =
1

‖b‖
b, u2 =

1

‖v⊥0 ‖
v⊥0 , u3 =

1

‖u1 × u2‖
(u1 × u2).

Show that the solution to the rotation equation can be rewritten as

#»x(t) =
b · v0
‖b‖

u1 + cos(‖b‖t)‖v⊥0 ‖u2 + sin(‖b‖t)‖v⊥0 ‖u3.

For this part you may find the identity a× (b× c) = (a · c)b− (a · b)c useful.
(f) Finally, draw a quantitative graph of the solution #»x(t). It should be a circle about the axis

through b, with some specified radius and distance from the origin.

21.6 Midterm

The midterm consists of eight problems and an extra credit problem.

Problem 1. Find the general solution to

x′(t) = (x(t)− t)2 + 1.

Your answer should have a constant C somewhere that is determined by the initial condition.

Problem 2. Let k be a real number.
(a) Find all k such that there exists a 3× 3 real matrix A having:

• eigenvalue 1 with eigenvectors (1, 1, 0) and (1, 0, 1), and
• eigenvalue 3 with eigenvector (2, k, 3).

(b) If such an A in part (a) exists, write down an example of it. Entries should involve k.

Problem 3. I will advise you not to compute the characteristic polynomial for this problem.
(a) Show that an n× n square matrix A has 0 has an eigenvalue if rank(A) < n.
(b) Find all real numbers k such that the following matrix has 0 as an eigenvalue.

0 1 0 1 k2

1 0 12345 0 3k
0 0 ln 6789 0 0
2 1 2 2 −6
0 0 0 1 2


Problem 4. Consider the matrix

A =

1 0 k
0 4 0
0 0 k

 .
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(a) For which values of the real number k is A diagonalizable?
(b) For the values of k where A is not diagonalizable, compute A2019. Your answer should not

involve k.

Problem 5. Let θ = π/10 throughout this problem. Consider the matrix

A =

[
cos θ − sin θ
sin θ cos θ

]
.

(a) Show that

An =

[
cos(nθ) − sin(nθ)
sin(nθ) cos(nθ)

]
for any positive integer n.

(b) Find the solution to
#»x ′(t) = A5 #»x(t), #»x(0) = (2, 3).

Your answer should not involve θ nor imaginary numbers.

Problem 6. Compute eA for

A =

4 0 2
0 2 0
2 0 4

 .
Problem 7. Consider the matrix

A =

[
3 −18
2 −9

]
.

Find the solution to
#»x ′(t) = A #»x(t) + (1, t), #»x(0) = (1, 1).

Problem 8. Consider the system of differential equations

dx

dt
= y,

dy

dt
= x4 − 5x2 + 4.

Find the equilibrium points, and discuss the kind of stability around the equilibrium points.

Extra Credit. Let A and B be two n× n matrices with AB = BA.
(a) Show that there exists an invertible matrix P such that PAP−1 and PBP−1 are both upper

triangular. [Hint: Show that A has an eigenvalue λ, and argue that you can somehow consider
B on the subspace ker(A− λI).]

(b) If A is diagonalizable, show that there exists an invertible matrix P such that PAP−1 and
PBP−1 are both diagonal.

21.7 Homework 4

This homework reviews lectures 9, 10, and 13. The last problem is optional and not for credit.

Problem 1. Consider the system of differential equations

dx

dt
= −y3 + x,

dy

dt
= x3 − y.
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(a) Find the equilibrium points.
(b) Linearize the system of differential equations around each equilibrium point.
(c) Discuss the kind of stability around the equilibrium points.

Problem 2. Consider

dx

dt
= −x3exy − 2y,

dy

dt
= 2xexy + x2yexy.

Show that this system of ODE is Hamiltonian, and compute the general solution curve.

Problem 3. Consider

dx

dt
= −x sin(y) + 2y,

dy

dt
= − cos(y).

Show that this system of ODE is Hamiltonian, and compute the general solution curve.

Problem 4. Find the general solution to y(6) − 2y(5) + 5y(4) = 0, where y(n) means taking the
nth-derivative of y.

Problem 5. Find a particular solution to y′′(t)−4y(t)−12y(t) = 2t3− t+3 by guessing a solution
of the form y(t) = at3 + bt2 + ct+ d. You do not have to find the general solution.

Problem 6. Find the general solution to x3y′′′ + xy′ − y = 0.

Problem 7. Solve for the general solution of

dy

dx
= −3

y

x
− y

3
2x

1
2 , x > 0

by following the steps below.
(a) Consider the change of variables u = − lnx and v = x3y(x). Show that

v = e−3uy(e−u),

and, after letting z = e−u, use the chain rule to deduce that

dv

du
= −3z3y − z4dy

dz
.

(b) By observing that z is in fact just x, show that

dv

du
= v3/2.

(c) Use the above ODE to find the general formula for y(x).

Problem 8. Find the solution curves of

dy

dx
= 4x2y2 + x5y3

by following the steps below.
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(a) Consider the change of variables u = lnx and v = x3y(x). Use the chain rule to deduce that

dv

du
= 3x3y + x4

dy

dx
.

(b) Show that
dv

du
= 3v + 4v2 + v3.

Then use partial fraction decomposition, or otherwise, to solve for the general solution v.
(c) Substitute back u = lnx and v = x3y(x) into the solution above to obtain solution curves of

the differential equation.

Problem *. In Lecture 9 we considered Hooke’s Law, which describes oscillations of a spring mass
without friction. Let us first study the case of damped oscillations, which can be described by the
equation

mx′′(t) = −kx(t)− ax′(t), x(0) = α, x′(0) = β,

with constant coefficients and real numbers α and β. To avoid the trivial case assume (α, β) 6= (0, 0).
(a) Solve the damped oscillation equation above. You should have three different answers, corre-

sponding to:
• overdamping in case a2 − 4km > 0,
• critical damping in case a2 − 4km = 0,
• underdamping in case a2 − 4km < 0.

(b) Show that x(t) crosses the origin at most once in the overdamped and critically damped case,
and crosses the origin infinitely many times in the underdamped case.

Next let us study the case of driven oscillations with damping. This can be described by the
equation

mx′′(t) = −kx(t)− ax′(t) + f(t), x(0) = α, x′(0) = β,

with constant coefficients and driving force f(t). Here α and β can be any two chosen real numbers.
(c) Find the general formulas for the solution of this equation using Duhamel’s Formula. There

will be three formulas, one each for overdamping, critical damping, and underdamping.
(d) Solve

x′′(t) = −1

4
x(t)− x′(t) + cos t, x(0) = 0, x′(0) = 0.

21.8 Homework 5

This homework reviews lectures 14 to 16. The last problem is optional and not for credit.

Problem 1. Solve

4y′′′(t) + 2y′′(t) + y′(t) = 1, y(0) = 1, y′(0) = 0, y′′(0) = 2.

Problem 2. Find the general solution to(
d2

dt2
+ 4

)2

y(t) = sin(2t).

Also find all solutions y(t) that are bounded, in the sense that there exists a constant Cy (depending
on y(t)) such that |y(t)| ≤ Cy for all t ∈ R.
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Problem 3. Find the general solution to

y′′(t)− 4y′(t) + 4y(t) =
2 ln(t)

t
e2t

on the interval t > 0. (This problem will appear in the final, so make sure you know how to do it.)

Problem 4. Find the general solution to

(t2 + t)x′′(t) + (2− t2)x′(t)− (2 + t)x(t) = t(t+ 1)2

by guessing two special solutions x1(t) and x2(t), and applying variation of parameters to get a
particular solution xp(t). Try exponentials and polynomials for the special solutions.

Problem 5. Find the general solution to

4t2y′′(t) + y(t) = 24
√
t ln t.

Problem 6. Find the general solution to

y′′(t)− tan(t)y′(t)− sec2(t)y(t) = sin(t).

Problem 7. Let

M =

[
5 4
4 5

]
, A =

[
31 32
32 40

]
.

(a) Verify that M and A are positive definite matrices.
(b) For all values of ω > 0, find the solution to

M #»x ′′(t) = −A #»x(t) + (3 cos(ωt), 6 cos(ωt)), #»x(0) = #»x ′(0) = 0.

(c) Find all ω where resonance occurs.

Problem 8. Find the eigenvalues, and a corresponding orthonormal basis of eigenvectors, for the
matrix 3 2 4

2 0 2
4 2 3

 .
Problem *. The Legendre equation is the equation

(1− x2)y′′(x)− 2xy′(x) + α(α+ 1)y(x) = 0

with α a fixed constant. Let us find the general solution to this differential equation on the interval
(−1, 1). Suppose one has a solution of the form

y(x) =

∞∑
n=0

cnx
n.

(a) Compute the Maclaurin series of

− 2x

1− x2
and

α(α+ 1)

1− x2
.
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(b) Show that

cn+2 = −(α+ n+ 1)(α− n)

(n+ 2)(n+ 1)
cn.

(c) Using part (b) or otherwise, show that

c2m = (−1)mc0
(α+ 2m− 1)(α+ 2m− 3) · · · (α+ 1)α(α− 2) · · · (α− 2m+ 2)

(2m)!
,

c2m+1 = (−1)mc1
(α+ 2m)(α+ 2m− 2) · · · (α+ 2)(α− 1)(α− 3) · · · (α− 2m+ 1)

(2m+ 1)!
.

(d) Show that

y1(x) = 1 +
∞∑
m=1

(−1)m
(α+ 2m− 1) · · · (α+ 1)α · · · (α− 2m+ 2)

(2m)!
x2m

y2(x) = x+

∞∑
m=1

(−1)m
(α+ 2m) · · · (α+ 2)(α− 1) · · · (α− 2m+ 1)

(2m+ 1)!
x2m+1

are two linearly independent solutions to the Legendre equation. You need to also check that
these two solutions are convergent power series on (−1, 1).

(e) Hence, or otherwise, write down the general solution to the Legendre equation.

21.9 Final Review Problems

This problem set reviews key ideas relevant to the final. The last problem is optional.

Problem 1. Solve the differential equation

#»x ′(t) = A #»x(t) + (12, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), #»x(1) = (0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0),

where A is the 8× 8 matrix given by

−1 16 0 0 0 0 7 0
−1 7 0 0 0 0 0 0
0 0 3 0 2 5 9 0
0 0 0 −5 0 4 0 0
0 0 0 0 0 3 0 4
0 0 0 0 0 8 0 0
0 0 0 0 0 6 −2 0
0 0 0 0 0 0 0 0


.

Your answer should not have integrals or terms that are not fully computed out.

Problem 2. Consider the system of differential equations

#»x ′(t) =

[
−t−1 0
t2 t−1

]
#»x(t) +

[
2
−t3
]
.

Check that [
t
t

]
,

[
t
3t

]
,

[
t−1 + t
t2 + t

]
,

are three solutions to this differential equation. Using this, find the general solution.
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Problem 3. Here are two conceptual problems.
(a) If A is a 5× 5 real matrix such that (x− 1)2 divides det(A− xI), must etA be unbounded as

t approaches infinity?
(b) If A is a 5× 5 real matrix with exactly three eigenvalues −2019 and −8 + i and −8− i, must

every solution to #»x ′(t) = A #»x(t) be bounded as t goes to infinity? In general, how do the
eigenvalues tell us about the behavior of solutions as t approaches infinity?

[Remark: Every conceptual problem in this course has involved either the characteristic polynomial
or the Jordan Canonical Form of a matrix. The final will be no different.]

Problem 4. Compute the Jordan Canonical Form of
3 −1 1 −1
2 0 2 −2
−1 1 1 1
−2 2 −2 4

 .
Problem 5. Consider the system of differential equations

dx

dt
= y,

dy

dt
= x− x2.

(a) Find the equilibrium points, and discuss the kind of stability around the equilibrium points.
(b) Show that this system is Hamiltonian, and compute the solution curve given initial conditions

x(2) = 1 and y(2) = 1.
(c) For the solution curve above, find the local extrema of y(t). Are there global extrema?

Problem 6. Consider the system of differential equations

dx

dt
= y2 + xy + 2y + 2x,

dy

dt
= xy − y.

(a) Find the equilibrium points, and discuss the kind of stability around the equilibrium points.
(b) Show that this system is not Hamiltonian.

Problem 7. Solve the following differential equations.
(a) y′′′(t) + 3y′′(t) + 3y′(t) + y(t) = e−t + cos t− 1.
(b) xy′′(x)− (x+ 1)y′(x) + y(x) = 0. (Guess exponentials and polynomials.)
(c) y′′(t)− t−1y′(t) + 4t2y(t) = 0. (Guess trigonometric functions.)
(d) 2t2y′′′(t) + 3ty′′(t)− 15y′(t) = 0, with y(1) = 1 and y′(1) = 2 and y′′(1) = 1.
(e) y′′ − 2y′ + y = et(t2 + 1)−1, with y(0) = 2 and y′(0) = 5.

Problem 8. Let

A =

[
3 4
4 9

]
, #»g 0 =

[
1
1

]
.

For all values of ω > 0, find the solution to

#»x ′′(t) = −A #»x(t) + cos(ωt) #»g 0,
#»x(0) = #»x ′(0) = (1, 1).

Also find the values of ω where resonance occurs.
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Problem 9. Find the eigenvalues, and a corresponding orthonormal basis of eigenvectors, for the
matrix 2 1 1

1 2 1
1 1 2

 .
Problem 10. Find the curve that minimizes the functional∫ 1

0
(x′(t))2 + (x(t))2 dt

subject to boundary conditions x(0) = 1 and x(1) = 0.

Problem 11. Find the curve that minimizes the functional∫ 4

1
(x′(t)x(t))2 dt

subject to boundary conditions x(1) = 1 and x(4) = 2.

Problem 12. Recall that the characteristic polynomial of an n× n matrix A is the polynomial

c(x) = det(A− xI).

The Cayley-Hamilton Theorem tells us that c(A) = 0, and the minimal polynomial is the smallest
degree polynomial of the form

m(x) = xd + cd−1x
d−1 + · · ·+ c1x+ c0

such that m(A) = 0. A problem in the midterm review tells us that the minimal polynomial divides
the characteristic polynomial.

(a) Let A be a diagonalizable n× n matrix with distinct eigenvalues. Show that m(x) = c(x).
(b) Let A be a general n× n matrix. Determine when m(x) = c(x).

Problem *. We know from Calculus I and II that the surface of revolution of a positive function
y : [a, b]−→R about the x-axis is given by

S(y) =

∫ b

a
2πy(x)

√
1 + y′(x) dx.

(a) Show that a function y(x) that minimizes S(y) must satisfy

y′(x) =

√
(y(x))2 − C2

C

for some constant C.
(b) Recall the hyperbolic cosine and hyperbolic sine functions are defined by

cosh(x) =
ex + e−x

2
, sinh(x) =

ex − e−x

2
.

By substituting y(x) = C cosh g(x), show that g(x) satisfies

g′(x) =
1

C
.

(c) Finally, show that the only function y(x) minimizing S(y) is

y(x) = C cosh

(
x+D

C

)
,

where C and D are constants determined by y(a) and y(b). This curve is called the catenary.
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21.10 Final

The final consists of eight problems and an extra credit problem.

Problem 1. Consider the system of differential equations

dx

dt
= xy + x+ y − 1,

dy

dt
= x2 − x− y.

Find the equilibrium points, and discuss the kind of stability around the equilibrium points.

Problem 2. Solve the differential equation

#»x ′(t) = A #»x(t) + (12, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), #»x(1) = (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0),

where A is the 12× 12 matrix given by

−1 16 0 0 0 0 0 0 0 0 0 0
−1 7 0 0 0 0 0 0 0 0 0 0
0 0 3 2 0 5 0 0 0 0 0 0
0 0 −1 0 0 4 0 0 0 0 0 0
0 0 1 2 1 3 0 0 0 0 0 0
0 0 0 0 0 8 0 0 0 0 0 0
0 0 0 0 0 6 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 −1 0 0
0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 0 0 0 −1 0


Your answer should not have integrals or terms that are not fully computed out.

Problem 3. Let

M =

[
5 4
4 5

]
, A =

[
14 13
13 14

]
, #»g 0 =

[
3
3

]
.

For all values of ω > 0, find the solution to

M #»x ′′(t) = −A #»x(t) + cos(ωt) #»g 0,
#»x(0) = #»x ′(0) = (−1, 2).

Also find the values of ω where resonance occurs.

Problem 4. The first part is related to the second part.
(a) Using the substitution y = lnx, or otherwise, compute the indefinite integrals∫

sin(lnx) dx and

∫
cos(lnx) dx.

(b) Solve
t2y′′′(t) + ty′′(t) + y′(t) = 1, y(1) = 1, y′(1) = 0, y′′(1) = 2.

Problem 5. Let A be a 1748× 1748 real matrix. Suppose A has 1 as the unique eigenvalue, and
suppose A has exactly 1747 linearly independent eigenvectors.
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(a) Show that
A2019 = 2019A− 2018I,

where I is the 1748× 1748 identity matrix.
(b) Show that

A(2I −A) = I,

so A is invertible with A−1 = 2I −A.

Problem 6. Find the general solution to

3y′′(t)− 12y′(t) + 12y(t) =
6 ln(t)

t
e2t

on the interval t > 0.

Problem 7. Find the minimum value and minimizing function y(x) for∫ 1

0
(1 + x)(y′(x))2 dx

subject to the conditions y(0) = 0 and y(1) = 1.

Problem 8. I will advise you not to explicitly solve for the differential equations in this problem.
(a) Consider the differential equation

#»x ′(t) =

[
−2x(t)− 4y(t) + 5
2x(t) + 2y(t) + 1

]
, #»x(0) = (1, 1).

Write down the equation for the graph of the solution #»x(t). Hence, or otherwise, determine
the minimum value of y(t).

(b) Consider the solution #»x(t) = (x(t), y(t)) of the differential equation

#»x ′(t) =

[
2x(t) + 2y(t) + 1
2x(t) + 4y(t)− 5

]
, #»x(521) = (2019eπ, 1438πe).

Compute
lim
t→∞
|x(t)| and lim

t→∞
|y(t)|.

Extra Credit. Let C be a symmetric and positive definite 2×2 real matrix, and let h : [0,∞) −→ R
be an integrable function. Show that∫ ∫

R2

h (〈 #»x , C #»x〉) dxdy =
π√

det(C)

∫ ∞
0

h(t) dt,

where the notation 〈 #»x , C #»x〉 means

〈 #»x , C #»x〉 =
[
x y

]
C

[
x
y

]
.

Use this to compute ∫ ∫
R2

1

(1 + x2 + 4xy + 5y2)2
dxdy.
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21.11 Extra Credit Assignment

In this extra credit assignment we seek to understand the differential equation

#»x ′′(t) = − GM

‖ #»x(t)‖3
#»x(t)

with G and M constants. This is derived from Newton’s Law of Gravitation and Newton’s Second
Law. If you have done some physics, you might realize that, together with the fact that planets
have negative total energy, the above equation is the Law of Planetary Motion that governs the
orbit #»x(t) of a planet circling around a star with mass M (and G is the gravitational constant). Our
goal is to understand the above differential equation using techniques similar to understanding the
solutions of first order differential equations arising from conservative vector fields. In particular,
we will derive Kepler’s Three Laws.

Kepler’s First Law. The orbit of the planet must be an ellipse, with the star at one of the focal
points of the ellipse.

Kepler’s Second Law. As the planet moves around the orbit, the line connecting the planet to
the star sweeps out equal areas in equal time.

Kepler’s Third Law. The square of the orbital period of the planet is proportional to the cube of
the semi-major length of its orbit.

Historically Johannes Kepler derived his laws by analyzing astronomical observations, and it
was Issac Newton that realized that these laws can be derived as special consequences of his famous
second law of motion. Try drawing pictures to see that Kepler’s Three Laws agrees with intuition
and common knowledge.

Deriving Kepler’s First Law

Let m be the mass of the planet. As is tradition, let us introduce the following quantities.
• The momentum of the planet is defined to be

p(t) = m #»x ′(t).

• The angular momentum of the planet is defined to be

L(t) = #»x(t)× p(t),

where the cross symbol is the cross product.
• The Runge-Lenz vector of the planet is defined to be

A(t) = p(t)× L(t)−GMm2
#»x(t)

‖ #»x(t)‖
.

• The total energy of the planet is defined to be

E(t) =
‖p(t)‖2

2m
− GMm

‖ #»x(t)‖
.

Because of physical assumptions we always assume #»x(t) satisfies

#»x ′′(t) = − GM

‖ #»x(t)‖3
#»x(t),

and the total energy E(t) is negative for all t.
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Problem 1. Show that
d

dt
L(t) =

d

dt
A(t) =

d

dt
E(t) = 0,

so that the angular momentum, Runge-Lenz vector, and total energy of the planet are actually
constant vectors. Let us now denote them by L, A, and E respectively.

Problem 2. If L = 0 then show that #»x(t) must be a line. This is not an orbit, so we assume
L 6= 0 as well.

Problem 3. Show that
#»x(t) ·A = ‖L‖2 −GMm2‖ #»x(t)‖

by showing that
#»x(t) · (p(t)× L) = L · L = ‖L‖2.

Problem 4. Show that
L · #»x(t) = L ·A = 0,

so both #»x(t) and A lie on the plane orthogonal to L, called the orbital plane.

Problem 5. After changing coordinates on the orbital plane such that A is a scalar multiple of
e1 = (1, 0), and writing #»x(t) = (x(t), y(t)), use Problem 3 to show that

(G2M2m4 − ‖A‖2)x2(t) +G2M2m4y2(t) + 2‖L‖2‖A‖x(t) = ‖L‖4.

Notice that this is an equation of a conic section. Use this to show that #»x(t) must be an ellipse by
showing the following fact: our assumption that the total energy E is negative implies that

‖ #»x(t)‖ ≤ GMm

|E|
.

This concludes our derivation of Kepler’s First Law.

Deriving Kepler’s Second Law

We now introduce some standard notation from classical geometry. Let R and r be the maximal
and minimal lengths between the origin and #»x(t) respectively. Then the semi-major length of #»x(t)
is defined to be

a =
R+ r

2
,

and the semi-minor length is defined to be

b = a
√

1− e2, where e =
R− r
R+ r

.

The quantity e above is usually called the eccentricity of #»x(t). By standard single-variable calculus
we have the following assertions.
• The area of the ellipse determined by #»x(t) is πab.
• There exists a number u such that

d

dt

∣∣∣∣
u

‖ #»x(t)‖ = 0,

so in particular #»x(u) is perpendicular to #»x ′(u).
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I will not ask you to show these facts, but you should convince yourself why they are true if you
have not seen them before.

Problem 6. Choose u as above such that

‖ #»x(u)‖′ = d

dt

∣∣∣∣
u

‖ #»x(t)‖ = 0.

Show that
‖L‖ = ‖ #»x(t)‖‖p(t)‖

and

E‖ #»x(t)‖2 +GMm‖ #»x(t)‖ − ‖L‖‖
#»x(t)‖

2m
= 0

Consequently, show that
‖A‖ = mE(R− r) = GMm2e

and that the direction of A points from the origin of the orbital plane to the point of closest
approach of #»x(t) to the origin.

Problem 7. Let α(t) be the area the line connecting the star and the planet sweeps out from time
0 to time t. Show that

d

dt
α(t) =

‖L‖
2m

,

and explain how this can be used to derive Kepler’s Second Law, by showing the following fact:
the area swept out from time t to t+ ∆, for delta very small, is approximately a triangle with area

1

2
‖ #»x(t)× #»x ′(t+ ∆)‖,

and linear approximation tells us that this quantity is approximately

∆

2
‖ #»x(t)× #»x ′(t)‖.

Deriving Kepler’s Third Law

Let P be the period of #»x(t), which is the time it takes to completely sweep out the ellipse determined
by #»x(t) once. By Problem 7, we know that

πab =
‖L‖
2m

P.

Problem 8. Use Problem 6 to show that there is a real number v such that

#»x(v) ·A = a(1− e)‖A‖,

where b is the semi-minor length. Consequently, use Problem 3 to show that

a(1− e) =
‖L‖2

GMm2(1 + e)
,

and use this formula and Kepler’s Second Law to derive Kepler’s Third Law:

P 2 =
4π2

GM
a3.

Notice that a is the radius in the case where #»x(t) is a circle, reducing Kepler’s Third Law to a
formula which you may have seen in high school physics.
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