Math 241 (Spring 2019) Homework 1 Solutions

January 31, 2019

Problem 1.2.3. The equation we want to derive is

ou Ky 0%u  OAdu

The expressions ¢, p, A(x), u(z,t), Ky are defined as before. To get the above expression, the same argument
used to derive equation (1.2.6) can be applied to yield

e(z,t) = cpu(x,t). (1)
We now need to derive the conservation of heat energy with variable cross-sectional area A(x). The analogous

expression for equation (1.2.1) is

% (e(x,t)A(z)Ax) = ¢(x, t)A(x) — ¢p(x + Az, t)A(x + ).

(Note that in this problem @ = 0.) By dividing throughout by Az, letting x — 0, and using the product
rule, the conservation law we get is

Oe d¢ 0A
A = (4052 + otz ). 2
To put everything together, we recall Fourier’s law of heat conduction, which says that
Ju
O, t) = —Kos. 3)
Substituting equations (1) and (3) into equation (2) yields
Ju 0 Ju Ou 0A
epA) 22 = A(r) (Ka> ,ou04

giving us the desired equation after dividing throughout by cp.

Problem 1.2.4. (a) The total amount of chemical in between = and Az is given by u(x,t)AAz. Looking
at its time derivative,

0

g [u(z, t) AAx] = ¢(z,t)A — ¢(z + Az, t)A

~
~

ot Ax

Take the limit as Az — 0:
au im ¢(I7t) —¢(I+Al‘,t>

Ot Az—o Az
ou _ 99
ot  Ox



Then, use Fick’s Law to get:
Ou_ 9 (_,0u
ot Oz Ox
ou_ o
ot 02

(b) The total amount of chemical between = a and x = b is given by f; u(x,t)Adz. Look at its time
derivative:

b
% / (e, ) Adz = (a, ) A — o(b, 1) A

b
/ @ dx = ¢(a,t) — ¢(b,t)

ot
b b

ou , o
; ad:ﬂ—— ; %d

Since this is valid for all a and b, the integrand must be 0 everywhere, so

Ju 0
— + ﬁ — 0
ot  Ox
Then, by substituting in Fick’s Law once again we get the diffusion equation % = k%.

Problem 1.2.8. The explanation before equation (1.2.6) tells us that the total thermal energy is

L
cp/o A(z)u(z, t) dx. (4)

Problem 1.4.1. In case it is not clear, the relevant equation for this problem is

d*u
il Q
dl‘Q KO
gotten by letting du/dt = 0 in equation (1.2.9). This is now a simple ordinary differential equation in one
variable, so we just state the answers here.

(b) One should get

T
u(z) =T — T2
(¢) One should get
u(z) =T
(f) One should get
1, L?
Sy T &
u(x) 2% + 3 x +

(g) One should get
T

Problem 1.4.4. The total thermal energy in the rod is given by

L
/ cpu dx
0



To show that it is constant in time, we can show that its time derivative is zero.

L
d
dt cpudx = / o (cpu) dx
‘ 8
u
= —d
Pot ™
0
We know from the heat equation that 2% = Ij—;g%ﬁ, SO
L 52
u
0
This can just be integrated directly to give
_ g 0ul”
9 0
ou ou
— Ko | GH(L0) - S0

But since both ends of the rod are insulated, a“ “(L,t) = a“ “(0,t) = 0, so this is zero. Since the derivative of
the total thermal energy is always zero, the total thermal energy remains constant.

Problem 1.4.7. (a) In steady state, %—7; =0, so we get

d?u
e — +1=0
=

dz2

This can be integrated twice to give the solution
x
u(z) = -5 + Ciz + Cy

oy d .
To apply our boundary conditions, we need g2:

d
et
du
—(0)=C1 =1
dl’<) !
du

C1 =1 and 8 = —L + 1 will solve this system of equations. So, we first know that there is only a solution
when 8 = —L 4 1, and that

2

u(x):—% +x+ Co

To find Cs, we need to look at the total thermal energy; note that
d L L 62
el de = —+1) dzx
a J, cpudx /0 ( 022 + )

ou L
=cp (8:1: —|—x>
0

=cp(f—-1+L)=0




So, the initial and steady-state thermal energies must be the same

/Lu(x)dz - /L f(z)dz

L L?
_74_7_‘_02[/ / f(z

6
1 [ [* > I?
Co=— de — — + —
2 L(O J(@)de 2+6>
(b) Follow similar steps to part (a). This time, the equilibrium equation is g%‘ = 0, so the solution is
u(z) = Cra + Coq
du _
de ~ !
Applying the boundary conditions, we get that C; = 1, and the requirement that S = 1. Again, the thermal
energy is constant in time, so
L L
/ u(z)de = / f(z)dzx
- + CoL / f(z
(/ sl )
(¢) Now we ge 32—“ = 8 — x, which has solution
3 2
u(e) = =% + 5 +Crz + G
du z?
w9 + Bx+ C
du
—(0)=C1=0
L0 =0
du L?
—_ _ L =
L= +5
L
So, we only have an equilibrium solution when 8 = 5, and
3 x?
=—— — 4+ C
u(z) 6 + B B + G2
The thermal energy is constant in time
d L L 82
X | cpudx:/o (az—i-x—ﬁ)dx
L? I
= _— L = _—— — =
o5 )-a(5 5
So, we can say
L L
/ u(zx)dx = f(z)dx
0 0
A LA L
—— 4+ —+C3L = f(z)dx



Problem 1.4.10. .In this problem the cross-sectional area is constant, so A(z) = A. if we compare our
data with equation (1.2.9), one sees that cp = K. Now, note that

T

Ou
u(z, T) = ; adt—i—u(xﬂ)

Thus equation (4) of Problem 1.2.8 tells us the total thermal energy at time ¢t = T is
L T (L g, L
KOA/ u(z, T)dx = KOA/ / — dxdt+ KOA/ u(z,0) dz
0 o Jo Ot 0
L

Tl 19?2
= KOA/ / (2 + 4) dedt + KoA [ f(x)dz
o Jo \0z

0

T L
= K()A/ @(L,t) - @(O,t) dt+4KOALT+KOA/ f(x) dx
0 ox ox 0

T L
— KoA / (6 5) di + 4Ky ALT + Ko A / (@) da
0 0
L
— KoAT + 4Ky ALT + Ko A / (@) da.
0

Problem 1.4.11. (a) The total thermal energy is given by fOL cpudz. To get it as a function of time, look
at its time derivative:

d d [*
(E® ==
dt( nergy) ” /0 cpu dx
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Integrate this to get the energy:

L2
Energy = cpt (7 - B+ 2) + Energy(t = 0)

2 L
= cpt (7—B+L2)+/ epf(x)dx
0

(b) An equilibrium exists only if the rate of change of the total thermal energy is 0: this happens if

B=T7+ L; We can then use this to find the steady state temperature distribution. In equilibrium, ‘3—7; =0,
so we get

d?u n 0

4=

da?

which has the solution 5

u(:c) = 7% + Cll‘ + CQ

for which



ou
%(0) =C =8

ou L2 L2 L2
~(L :_7 _ _ -
ax( ) +8 5 + 7+ 5 =7

So,
3

u(z) = —% + Bz + Cy

We can use the total thermal energy to figure out the value of Cj.

/OL cpu(x) dr = /OL cpf(x)dx

/OL {—mg—kﬂx—FCg} d:v:/Lf(:z:)dx

——+ﬁ—L2+c2 / fa

24
BL?




Math 241 (Spring 2019) Homework 2 Solutions

February 7, 2019

Problem 2.2.2. (a) Clearly L(u + cv) = L(u) + ¢L(v) for any constant c.
(b) In this case L will not be a linear operator if Ky is not dependent on u. An example is Ko(z,u) = u.

Problem 2.2.4. (a) We are probably assuming linearity of L here. If so, then it is clear by the definition
of a linear operator.
(b) An answer is up1 + up2. (You can also add homogeneous solutions.)

Problem 2.3.1. The idea is to write u(x, t) = ¢(x)G(t) and separate the stuff with ¢ and G after substituting
this into the PDE. We give the answers below. (Your answers can vary up to signs and scaling.)
(b) One should get
Gt = -G, ke — vodz = —A.
(¢) One should get
Goe = —AP,  hyy = Ah.

For this part the variables are x and y.

(d) One should get
k 0 J¢
=-A —— (=) = -\
G ¢ r2 or (r 87‘) ¢
For this part the variables are r and ¢. One can also further simplify the second ODE using the chai rule.

(e) One should get
hi = Mkh, Drwze = AP.

Problem 2.3.2. The idea is to follow the same steps as outlined in section 2.3 of the book. You should
consider the cases A > 0, A =0, and A < 0. We give the answers below.
(a) One should get
A=n? n=123,....

nr— T\ 2
A:( 2) ., n=1,23,....

(d) One should get

L

Problem 2.3.3. (b) Since u(z,0) = 3sin 2% —sin 37Z is already expressed as a linear combination of sin 27Z,

we can proceed by matching coefficents to the Fourier series: B; = 3 and Bs = —1. Then, using the general
solution we found for this problem,

u(z,t) = 3sin T8 o=k(m/L)*t _ gin 3mq Le~kBT/L)%

(c) We just need to find the coefficients B, for this initial condition.

2 [k 3
Bn:—/0 2cos%sin¥dx

L

4/L 3rx . mmcd
= — cos — sin — dz

L J, L L



Using the trig identity that sinacos 8 = 1/2(sin (o 4+ 8) + sin (o — f8)), we get
2 (* 3 -3
= Z/o (sinmL)m: —&-sin(nL)mj> dz
2

0S + cos

_ [ L (+3)m L (n—3)ﬂ':z]
L |(n+3)rm L (n—3)m L

If n+ 3 is even (i.e. n is odd), then these integrate to zero. However, if n is even, the cosine terms integrate
to 2, and we get

oo 2[ 2 2
" Lin+3)r (n—3)r

N

 ow\n2-9

o 8n

~ w(n2-9)

So, our final answer is
u(z,t) = 8 — ) sin ZEE e —h(nm /L)%t
o e n%—9 L

n 3 Fy 0y

9 L/2 9 L
B, Z/o sianm—&—L/L/22sinTTcdx

2 ( mrx) L/2 4 ( mryc) L
= —— (cos — — — (cos —
nmw L 0 nmw L L2
2 nm 2 4 4 nmw
= ——(C0S— + — — — cosnmT + — cos —
nmw 2 nT  nmw nmw 2

2
— [1 4—cosE — 2cosmr}
nmw 2

There are three cases:
if n is odd

6
0 if n is a multiple of 4

B, =

—% if n is a multiple of 2 but not 4

With these values of B,,,
= nwx 2
1) = B, si —k(nm/L)*t
u(x,t) nEZI sin ——e

Problem 2.3.4. (a) The total thermal energy looks like:
L
Energy = cpA/ u(z,t) dx
OL s nwT 2
= cpA/O nz_:l B, sin Te_k(””/L) tdx
= cpAni_O:1 - [B;ZTL oS anj}

2Bl o2
—epA S Zon o/ '
odd n

L 2
e—k(nﬂ'/L) t

0



The B,,’s are given by

Problem 2.3.6.

L L

1 _

/ cos nrr cos mrr dr = = / cos (n—m)rz + cos (n+ m)mz dz
0 L L 2 Jo

1 L . (n—m)mx L . (mn+m)rz o
== sin sin

2 [(n—m)w L (n+m)m L 0
=0

If n —m =0, but n and m are not 0, then the second term integrates to zero, but the first term is

1 [ L
lde ==
QA T

If n = m = 0, then both terms become 1, and we get

So,

The solution for this is

u(z) = C} cosh \/fm + Cysinh \/gx

Plugging in that u(0,t) = 0, we get that C7 = 0; plugging in w(L,t) = 0, we get

u(L) = Cysinh \/fL =0

Since sinh x is never 0 except when x = 0, this means that Cy = 0 as well, so the steady-state solution is
just the trivial solution u(z) = 0.
(b) Solve this by separating variables: guess a solution of the form

u(z,t) = ¢(x)G(t)

The PDE now becomes:
oG = k¢"G — apG
Divide through by k¢G to get

G/ (b// o
G~ 6k
Since the left side is a function of t, and the right side is a function of x, they must be equal to a constant:
G/ i
&G ¥ e,
kG ¢k

w



Solving the time portion is the same as usual:
G(t) = e kM

For the spatial part, we have
/! — _ g
¢'() = - (A= 7) 6(a

With p =X —a/k

¢"(x) = —po(x)
with boundary conditions

$(0) = (L) =0

This is the same problem we solved in section 2.3; we know what the eigenvalues and eigenfunctions are:

2
(b = (”%) cn=1,23,..

On(x) = sin? im=1,23,...

For each value of u,, we get a corresponding A,:

« nT\2 «
=t 5= (T) + 5

Combining our solutions, the general solution is
_ =  PTE (/L) +a/k)t
t) = B,, sin ——
u(z,t) ; sin ——e
To find the B,,’s, we use the fact that
u(z,0) = ,;)Bn sin ? = f(z)

And so,
2 L
anz/o f(x)sin?dx

In the limit that ¢ — oo, all the exponential term in the series go to zero, and so the entire function goes to
u(z) = 0, which is what we expected from part (a).



Math 241 (Spring 2019) Homework 3 Solutions

February 14, 2019

Problem 2.4.1 (a). From Section 2.4.1 of the book, the answer is
u(.’L', t) = nzo An cos %e—(nﬂ—/L)zkt7

where A,, is as specified in Equations (2.4.23) and (2.4.24). A computation tells us that

I 1

AOZZ/O u(x,O)dz:?
2 [ 2

A, = —/ u(z,0) cos T o = —— sin = for n > 1.
L 0 nm 2

Problem 2.4.3. Write s = —\. If s > 0 then the general solution is
B(x) = eV + cpe” Vo2,
The boundary conditions tells us that
e+ e = e?Ve 4 626_2\/§ﬂ,

e — Cy = c1€2VET _ cpe2VET

Thus 1 = e2V57 a contradiction.
If s = 0 then the general solution is
o(x) = c1 + com.

The boundary conditions tells us that

c1 = ¢ + 2ca,

Coy = Co.

Thus constant functions are eigenfunctions for A = 0.
If s < 0 then the general solution is

o(x) = sin(\&x) + e cos(xﬁ)\x).
The boundary conditions tells us that

Cco = c1 8in (2\5\71') + ¢o cos (2\5\71'),

¢1 = €1 COS (2\&7?) + co sin (2\5\7r>.

Solving for sin (2\/X7T) and cos (2\F/\7r) gives us
sin(Qﬁﬂ) =0, cos (2\5\77) =1.

Hence we require 2v/ A1 = nr for n > 1, with corresponding eigenfunctions sin(ﬁm) and cos(\[\:z:).

Summarizing, the eigenvalues and eigenfunctions are



e )\ =0 with ¢o(x) =1,
e )\ =n? for positive integers n, with ¢, 1(z) = sin(nz) and ¢, 2(x) = cos(nz).

Problem 2.4.4. If s = —\ > 0 then the general solution is
o(x) = c1eV 4 coe VI,
The boundary conditions tells us that

c1+co =0,
creVsE _ cpeVEL — .

Note that ¢; # 0, else ¢(z) = 0. If we assume ¢; # 0, then the boundary conditions tells us that 2eVsF = —1,
a contradiction.
Problem 2.4.6. (a) To get the equilibrium temperature distribution U(x), we need to solve
d*u
dx?

with boundary conditions U(—L) = U(L) and U,(—L) = Uy(L), and initial condition u(z,0) = f(z). The
general solution is

=0

U(z) = c1 + cox,

and upon substituting the boundary conditions one sees that U (z) = ¢ for some constant ¢. We now use the
conservation of heat energy, as discussed in Section 1.4 of the book, to get

/LLU(:c)d;U = /LLu(x,O) dz,

Uz) = i/_L (@) da.

(b) Use equations (2.4.38) and (2.4.43) to get

giving us

L
U(z) = lim u(x,t) =ag = %[L f(x)dx.

t—o0

Problem 2.4.7 (b). Separate variables to get the two ODEs: G'(t) = —kAG and ¢ = —A¢$. The time
ODE has the same solution as always:

G(t) = ek

Now we have to split up the x ODE into cases; for A > 0, we have
d(x) = C) cos V Az + Cysin vV

From u(0) = 0 we get that C; =0
$(x) = CysinVAz

¢ (z) = CyvVAcos VAz
¢'(L) = CyVAcos VAL = 0
cos VAL = 0

This gives us the restriction on A:



A = 0 gives us only a trivial solution. For A < 0, we get
¢(x) = Cy cosh V Az + Cy sinh vV Az
From u(0) = 0 we get C; = 0, and the second boundary condition gives us

Cov/Acosh VA =0

This has no solutions, so there are no negative eigenvalues.
So, the general solution is

= Z A, sin we*k((nﬂm)w/m?t

(n+1/2)7x
L

Now, we can show that sin are orthogonal:

L L

L L 2

0, n#m
L
27

n=m

L L .
/ <in (n+1/2)mx sin (m+1/2)rx dp — 1 / (cos (n —m)mx o (n+m+1)mz
0 0

So, we can use the same trick to get the Fourier coefficients:

/ f@)si n+1/2) T

Problem 2.5.1 (b). Separate variables as u(z,y) = h(z)¢(y). Then the resulting ODEs are

B(@) = M5 ¢ (y) = —A¢

The ¢ equation, with ¢(0) = ¢(H) = 0 is something we’ve solved many times before:

nm\ 2
M= ()
nmy
¢n, = sin 7
Then, for h(z) we get
h(x) = Ci cosh na(z — L) + Cy sinh nm(z — L)

H
The requirement that h'(L) = 0 gives us that Cy = 0, and so

)
h(y) = Ci cosh %

Our general solution is then

- —L
= ZAncoshmr(xH)sinT

Then, plugging in the one inhomogeneous boundary condition, we get that

wL
ZA &hTsin%

And so,
2 nmy

H
An = H sinh (—nwL/H) /0 9) sde:c

) i



Problem 2.5.3. We separate variables, to get ¢”'(0) = —\¢ and r2G” +rG’ —n?G = 0. The 0 is something
we’ve already seen; the eigenvalues are A = n? and the eigenfunctions are cosnd and sinnf, with a constant
eigenfunction when n = 0. For the r equation, we get

G(r)=Cir"+Cer™ , n>0

G(r)=Cs5+4+Cylnr, n=0

Here, the requirement that G(r) be finite as r — oo gives us that C; = Cy = 0. So then, our general solution
is

u(r,0) = Ag + Z A,r~" cosnf + Z B, r " sinnf
n=1 n=1
(a)
u(a,0) =In2+ 4cos 30
By matching coefficients, we get that Ag = In2, and that Az -a~3 = 4 or that A3z = 4a. So,
3

u(r,0) =In2 + 4?—3 cos 360

(b) In general, we can get the Fourier series coefficients for f (because cosnf and sinnf are mutually orthog-
onal on [—,7]):

1 s
Ag == f(0)do
T™J—m
2a™ [T
Ap = — f(8) cosnb db
m —m
2a™ [T )
B,=— f(6) sinnb db
T

—T

Problem 2.5.5 (a). We again have ¢()) = —A¢, subject to ¢'(0) = 0 and ¢(%) = 0. First, let’s look fro
positive eigenvalues:

$(8) = Oy cos VA + Casin VA
But the condition ¢’(0) = 0 mandates that Cy = 0, so we only have

qﬁ(g):cos )\g:0

A=02n—17%, n=1,23,.

There are no zero or negative eigenvalues. Then, for the r equation we get r2G” +rG’ — (2n —1)2G = 0, for

which we get
G(r)=Cir®" P+ Cor' ™" | n >0

This time, we require that G(r) be finite as  — 0, which gives Cy = 0. So then, our general solutions is
[ee]
u(r,0) = Z A,r?" L cos (2n — 1)1
n=1

Then, the formula for A4, is

% /OE f(0)cos (2n — 1)70 dx

ﬂ-GZn

A, =
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Problem 3.2.1(c)(d)(g). The sketches are attached after Problem 8.

Problem 3.2.2. The sketches are attached after Problem 8. One determines the Fourier coefficients using
Equation (3.2.2) in the book. We record the answers here.
(b) One should get

1 _
aozﬁ(eL—e L)7

=O)"L .
an:n2ﬁ2+L2(e —e ),

(=D"nm —L
o= 2@ ¢

(¢) One should get b; = 1 and all other coefficients zero.
(g) One should get

| o

ag =

)

ap =V,

o
— )

by, = E(l — cos(nm)).

Problem 3.3.1(c)(d). The sketches are attached after Problem 8.

Problem 3.3.5(b). The sketches are attached after Problem 8. One determines the Fourier coefficients
using Equations (3.3.19) and (3.3.20). The answers are

7 2 (3 U mr)
ag = = ap = — (3sin — — 2sin — ) .
’T 6 " 2 6
Problem 3.3.18. (a) f(x) will equal its Fourier series for all z, —L < z < L, if it is continuous so long as

f(=L) = f(L).
(b) f(z) will equal its Fourier sine series for all z, 0 <z < L, if f(0) = f(L) = 0.
(¢) f(z) will always equal its Fourier cosine series for 0 < x < L if it is continuous.

Problem 3.6.1. If n # 0:

_I/Lf( )inﬂr/Ld
cn—2L > T)e T

— e'LTLﬂ'LE dm
2IA /.

zo+A
— 1 i inmx/L 0
2LA inm 0
1 - )
_ inm(zo+A)/L _ znﬂmo/L>
2inm A (e ¢
1 . )
_ inTtxo/L ( intA/L 1)
2innA° €



Ifn=0:

1 L 1 To+A
1

Co = E
Problem 3.6.2. Let f(z) be real on [—L, L]. Then,

" / f —zn‘n’x/L dr

But we know that f(z) = f(x), because it’s real, and that einme/L = ¢=inmz/L Go

1 L
— inwx/L
Con =57 [L f(z)e dx

1 L
Cep = ﬁ [L f(x)einﬂ'm/L dr = n

Problem 8. (b) The Fourier Cosine Series coefficients look like:

1 L
aozz/o 2% dx

1L
L3
L2
Y
2 L
a, = —/ z2cos—xdz
L J
2| L 4. nmx 2L [ . nrx
=— | —z°sin——| — — rsin — dx
L | nrm L |, nmJj L
4 L
= —— Tsin — dz
nm Jo
4 L nwT L [ nmT
=—— | ——xcos —— — cos — dz
nm nmw o N Jo L
the second term is zero
4L
4L2(—1)"
T e
So, we have
L? 42 & (17 nrx
9@) =5+ T 2 s
n=1
(c) Let’s plug in at x = L:
L2 4’ &1
Ly=1°?= —
g(L) 5 T 3

3 2 n2
n=1
(oo}
Z : s
— i
n
n=1 6
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Problem 4.2.1. (a) The ODE we want to solve is

32uE
0x?

To —gpo =0

with boundary conditions u(0) = u(L) = 0. By integration, the solution is

_ 90 > gpol
27T, 2T,

up(z)

(b) By assumption
Pu 0%

otz ¢ or2
and 2 32uE 82UE
a2 9 o2 0
Therefore ) ) )
A
as desired.

Problem 4.2.5. Use the same derivation in Section 4.2 of the book, assuming po(z) and T'(z, t) are constants.

Problem 4.4.3(b). We show that the solution is
_ B . nTx .
t) = 2p —_— An nt Bn nt )
u(z,t) = e 2r0 n§:1sm T (A, cos(wnt) + By, sin(wyt))

where

2 (* 2 (b
A, = Z/o f(x) sin?dw, B, = wnL/o g(z) sin?daz.

Let u = ¢(x)h(t). By separating variables, one gets the ODEs

2
pod’h B dh
Ty dt?2 Ty dt
and 2o
72 A, ¢(0) = ¢(L) =0

The second ODE is something we have seen before; the eigenvalues and eigenfunctions are

nm 2
A_(f),n_Lz&m
ox(z) = sin %



We now solve the first ODE. The characteristic polynomial, depending on A, is

po o B (mr)2
7 i - =0
.Y Tt \T ’

implying

B8 B2 Ty /nm\?2
aoefy [P To (e
2p0 4p5  po \ L

By assumption on 3 the expression under the square root is negative, so the general solution for this ODE,
depending on A, is

_B _B
h(t) = cre” 270" sin(wnt) + coe” 200" cos(wnt),

2
o \/ ‘ﬁ)o s Po (%)2

Putting everything together, the solution for the damped vibrating string is

where

LB
u(z,t) = e 20’ Z sin % (A, cos(wpt) + By, sin(wpt)) .
n=1

It remains to solve for A, and B,. Since u(z,0) = f(x),

nmnT
E B, sin —

We use the usual orthogonality relations to get

2 L
= z/o f(x)sin?dx.

> nmT
= E B, w, sin —
L L b

n=1

Finally, as us(z,0) = g(z),

so
2

L
B, = WnL/o g(z) Sin%dx.

Problem 4.4.7. As g(x) = 0, the solution of the wave equation is

nmct
A, sin — co .
Z in 2 7

(See Equations (4.4.11) and (4.4.13).) Let
Z A, sin @.

By taking o = nwa/L and 8 = nmet/L in the identity

sin(a — ) + sin(a + )

sinacos 8 = 3

one immediately sees that

F(m—ct)—&-F(a:—&—ct).

u(z,t) = 5



Problem 4.4.9.

B _d 1/L du QdHc?/L ou* 4y
dt  dt |2/, \ot 2 /o \Ox
L@@dm—&-c2 L@LQU x
o Ot Ot? o Ox dxot

Py
—C ), ot ox2 , Oz dzot
_ 2/ @@J’_@agu d
=)y \otos2 T oz oaar)
L

0 (0Oudu
_ 2 ===
_C/o 3x<8m8t>d$

5 Ou oul”
Oz at

Problem 4.4.10. (a) If u(0) = u(L) = 0, then this also means that 2%(0) = 2%(L) = 0. Hence, 3£ = 0,
and so the energy is constant.

(b) In this case, %’;(L) =0, and %(0) =0, so both terms in £ are zero, so again energy is constant.
()
dFE
dt

v dt

= (1) P (1)

2
et d 2
=~ g L1’
So, integrating this gives that
BE(t) = 7; w(L,t)? + C

Hence, the total energy will decrease over time, if v is positive.
(d) The total energy will increase over timeif v is negative.

Problem 4.4.11. First, note that if u(x,t) = R(z — ct), then we have that % = R/(z — ct), and that
% = —cR'(z — ct) (just by the chain rule). The energies are then

1 [* fou\? e [t 9
KE—§/O (é)t) dx = 2/0 (R'(z —ct))* dx

2 [t rou\? 2 ko 9
E—E/O <8:U> dx—;/o (R'(z — ct))*dx

Problem 8. The solution to this particular problem is done in the book in section 4.4, the solution is

oo
nmwxT nmct nmxT nmct
u(z,t) = E <An sin — cos + B, sin — sin >
= L L L L

The formulas to find the coefficients are also given in the book:

/ flx sm—dx

B, = g(gc) sin % dz



(a) Since f(x) = 0, all the A4,,’s will be zero. By matching coefficients, B52F¢ = 2, so Bs = 2% and all other

Sme?
B,,’s are zero. Overall,
2L . bmx . bmet

u(z,t) = g Sin 7 sin —
b) Again, by matching coefficients, A; = 2, A3 = 1, and all other A,’s are zero. Also, 34% =3, so
By=2L.S
4~ 4xe 9,
(2,4) = 2si X et L 3rx 3mct n 3L | 4mx | 4mct
u(x,t) = 2sin — cos — + sin —— cos — sin — sin
’ L L L L 4dme L L
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Problem 5.3.2. (b) Letting u(x,t) = ¢(z)h(t), one gets

he Pl _ g bu o

h - ph “po " p

Thus in order to separate variables we need Sp = ¢ for some constant c.
(c) If 8 = c¢p as in the previous part, then

htt — Cht = -\
TO¢IZL’ + aQS = _)‘p¢

The spatial equation is in Sturm-Liouville form (with p(z) = To, ¢(z) = a(x), and o(x) = p(z)). The time
equation can be solved by considering the characteristic polynomial

v —cy+A=0
with zeros
etV —4)2
y=—"5 "
If ¢> — 4A? > 0 then the general solution is
ht) = cle(@)t + 026(@)@

If ¢ — 4)\? = 0 then the general solution is
h(t) = c1et? + cotet/?,
If ¢ — 4)\? < 0 then the general solution is
h(t) = cret/? cos( 4N2 — 02t> + cgect/? sin( 4N2 — c2t).
Problem 5.3.3. By comparing coefficients with the general Sturm-Liouville equation, one needs
p=H, p = aH, q=H, o= BH.

The first two equations tells us that H' = aH, so by the integration factor

We can let ¢ = 1, and pick



Problem 5.3.5. From Table 2.4. the eigenvalues and corresponding eigenfunctions are

2
A= (55 m=0123,

L
nmx
¢(z) = cos <
Thus (a) is clear. For (b), one observes that ¢(z) has zeros
L 3L (1+2(n—-1))L
2n’ 2n’ 77 2n

on the interval (0,L), so the (n + 1)*"-eigenfunctions has n zeros. (Warning: For this problem \; = 0,
Ay = (7/L)?, A3 = (2r/L)?, and in general \,,+1 = (n7/L)? has one less index!)

For part (c), any piecewise smooth function on (0, L) can be approximated by these eigenfunctions by
considering the Fourier cosine series, and the eigenfunctions are orthogonal by the orthogonality relations
from Chapter 3. For (d), the Rayleigh quoient in this case is

L
\ Jo (do/dx)? dz
i ¢2dx
which tells us that the eigenvalues must be nonnegative. It also tells us that A = 0 is possible, since this

implies the numerator of the Rayleigh quotient is zero, and thus (d¢/dx)? = 0, telling us that ¢(x) can be
chosen to be a nonzero constant.

Problem 5.3.6. Proceed exactly the same as in the previous problem. The only difference is that the
eigenvalues in this problem are “shifted”:

—x/2\ 2
/\_(mer/) , n=1,2,3--.

Problem 5.3.9. (a) Multiplying by % gives the equation

d2¢  do A

d [ do) A,

Which is in regular Sturm-Liouville form, with p(z) = , ¢(z) = 0, and o(z) = *.

(b) Using the Rayleigh quotient,
b 2
_gcqb% X + flbx (%) dx
f ¢2(1/x) da
the first term vanishes because of the boundary conditions:
2

J 1b x (%) dx

A=——"7"—2—

b

J] #*(1/x) dx

Since the numerator and denominator are integrals of a non-negative quantity, A > 0.
(c) Guess a solution of the form ¢(z) = 2”. This gives 72 = —\; since A > 0, this means r is imaginary;
the solution is therefore

¢(x) = Cy cos (VAInz) + Cysin (VAInz)
Plugging in boundary conditions, ¢(1) = 0 gives C; = 0, while ¢(b) = 0 tells us the eigenvalues:

sin (VAInb) =0



VAInb = nr

- (i)

We have to look at A = 0 separately: then we get 72 = 0; the solution therefore ¢(z) = A+ Blnz.

#(1) = A =0, and ¢(b) = Blnb = 0 has no non-trivial solution, so 0 is not an eigenvalue.
(d) The eigenfunctions are orthogonal with respect to L as a weight.

nrlnx mrlnz 1

b b
! gbnquadx:/l sin h sin b ;dx

Let u=1Inz, du = Ldz, and the bounds become u : 0 — Inb.

Which we know is 0 unless m = n, as they are the familiar sine eigenfunctions, with L = Inb.

(e) The nth eigenfunction is sin 2122 It has zeros when:

nrwlnx

Inb =k

Inx =1Inb <k>
n

k k
x:eﬁlnb:bﬁ

But

x is within the interval [1,b] when 0 < k < n; there are n — 1 such values, and hence ¢,, has n — 1 zeros.

Problem 5.4.2(b). The time ODE is simple, h(t) = e **. The z ODE looks like

d

do B
T [ Ko@) 52] + xep0 =0

which is Sturm-Liouville form with p =1, ¢ = 0, and ¢ = ¢p. Using completeness the general solution is a

linear combination of the separated solutions:

= ianén(x)e Ant

n=1

And orthogonality means that
f o x)cpdx

fo ¢>2 x)cpdx

As for tlim u(z,t), this will only be non-zero if a constant solution is allowed. For these boundary
— 00

conditions, it is allowed, so zero is an eigenvalue, and ¢;1(z) = 1. Hence tlim u(z,t) will be a (possibly
—00

non-zero) constant.

Problem 5.4.3. Separate variables: u(r,t) = ¢(r)h(t). Then,

, kO
fbh*;a(“ﬁh)

Woo19, .,

W rear ") =2

The time equation gives that h(t) = e **. The r equation is

d [ do B



Which is a Sturm-Liouville problem with p =r, ¢ =0, and 0 = r. So, we get that

U(T, t) = Z an¢n (T)eik/\t
n=1

) dr
" foa &2 (r)rdr

Problem 8. For this problem, p(z) = 1+ 22, ¢(z) = 0, and o(z) = 1. So, the Rayleigh quotient is

—(1+ x%qb%‘j + fOL(l + 22) (%)2 dx
I ¢ da

The first term is 0 because of the boundary conditions, so

A=

fOL(l + 22) (g—i)z dx

L
Jy ¢?dx
The numerator and denominator are both integrals of non-negative quantities, so A must be non-negative.
A = 0 when the integrand of the numerator is zero; since 1 + x2 > 0 this must mean % = 0. In turn this

would mean ¢ = C, a constant. But the boundary conditions force C' = 0, which makes ¢ trivial. Therefore,
zero is not an eigenvalue, and A > 0.
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Problem 7.3.1(a). By the exact same derivation as Section 7.3 of the text,

m _
u(zx,y,t E E Apm sm—sm Lye Anmkt

n=1m=1

o= () + ()

tlgglo u(z,y,t) = 0.

where

Since the eigenvalues are positive,

Problem 7.3.2(b). By separation the variables successively as in the text:
o(z,y) = e(z)aly, 2)
a(y, z) = f(y)g(2)
one gets the following ODEs up to reordering;:
B'(t) = —=Akh(t),

"(z) = —pe(z),  €(0)=€(L)=0,

f'y)=—ofly),  f(O)=f(H)=0

9"(z) ==(A—n—-0)g(z), 40)=g(W)=0.
The general solution for h(t) is h(t) = e~ ***. Using Table 2.4.1, one sees that the eigenvalues and eigenfunc-
tions are

U (%)2 + (%)2 + <;;)2 (n,m,1 >0), Gmon,i(T,y, 2) = cos (?) cos (%) cos (hrwfz) )

Therefore

x Y,y 2, t Z Z Z Al COS ( ) cos (%) cos (%) e Akt

=0 m=0n=0
We compute the coefficients for A,,,,; using the standard equation

fo fo fo (z,y,2)cos ("zx) cos (m}}ry) cos (l”) dzdydx
fo fo fo cos? (“£%) cos? ("FY) cos? (lm) dzdydx

The denominator can be further simplified using the orthogonality relation

/ T 2 PTTU T, p=20
cos u =
In particular, since Aggp = 0 and A is positive otherwise,

1 W H L
tlggo u(z,y,z,t) = Agoo = m/@ /0 /o az,y, z) dzdydx.

nml =



Problem 7.3.4(b). In this problem one has
R (t) = —Xkh(t),
Vi = —Ao.

By the same derivation as Section 7.3 of the text, separate ¢(z,y) = f(z)g(y) to get the eigenvalues and
eigenfunctions

e (25 () oz = on () o (%52)

For Ago = 0 one has h(t) = ¢1 + cot, with ¢4 = h(0) = 0, and for the other eigenvalues, which are positive,
h(t) = a1 sin(cﬁt) + cos (cﬁt) with ¢ = h(0) = 0. Thus

u(z,y,t) = Aoot + Z Ay COS (?) coS (%) sin (c /\n’mt).

(n,m)#(0,0)
Since i mry
a(z,y) = u(z,y,0) = Ago + Z cAnmr/An,m cos (T) cos (T) ,
(n,m)#(0,0)
the orthogonality relations for the cosine function tells us that
1 L H
Aoo = — dyd
0.0 = Hp /0 /0 a(z,y) dydz
9 L H mry
= — >
Ao,m cHL\/W/O /0 a(z,y) cos( i ) dydz (m >1)
2 LorH nwx
= — >
Ano cHL\/W/O /0 a(x,y) cos ( T ) dydz (n>1)
4 L H
Anm = m/o /0 a(z,y) cos (?) cos (%) dydz (n,m >1).

Problem 7.3.5(b). By separating variables, one gets
R (t) + kR (t) + Ah(t) =

f'(x) + pf ()
9" () + (A= wmg(y)

I
o o o

Problem 7.4.1. (a) We can separate variables in this PDE: if we let ¢(z,y) = f(x)g(y), then we get
g+ 19"+ Afg=0

£ g"
g

In y, our ODE reads ¢"(y) = —ug(y), with the boundary conditions g(0) = g(H) = 0, so

Then plugging into our ODE for f gives " (x) = —(A — uy,) f(); f/(0) = f/(L) = 0. The solutions is then



m7'ra:

_ JcosHp m >0

So, the doubly infinite set of eigenvalues is

2 2
Ay = (%) ¥ (%) ,m=0,1,2,..; n=123, ..

2 2 2
b) When L = H, Apn = ZF")™  with m starting at zero and n starting at one. For any m and
L
n, except the ones where m = 0, A\ = Apm, SO most of the eigenvalues have at least two associated
eigenfunctions.
(c) The eigenfunctions are ¢y, (z,y) = cos = sin “7¥.

L pH L H
k l
A /O Omn @ dxdy = /0 A cos mre sin % cos % sin % dxdy

/L mmx k:mcd /H nwy lﬁyd
= cos cos — dx sin —= sin —=
o L L “), g MY

{L4H, m==kandn=1

0, 0.W.

Problem 7.4.2. Using the Rayleigh quotient,

~$ 6V -nds+ [[,|Ve|* drdy
ffR(dexdy

Our boundary conditions say that ¢ is zero everywhere on the boundary, so the first integral over the
boundary will vanish. Then we are left with

A:

[ Vol dz dy
ffR ¢ dx dy

Since the numerator and denominator are integrals of non-negative quantities (since they are squared),
A is also non-negative.

)\:

Problem 7. (a) Plug into the PDE, which tells us that V2¢,,m = —Am®nm.

VQ nm —
¢ 0x? + Oy?
V2¢um = —n’m?sin (nmz) sin (mry)+m? a2 sin (mrz) sin (nry)—m?27? sin (nmz) sin (mry)+n?a? sin (maz) sin (nmy)
V20nm = —m%(n? +m?) ((sin (nmz) sin (mmy) — sin (mmz) sin (n7y))

S0, Amn = m2(n? + m?).
(b) We know that for the wave equation, the time dependent part looks like h(t) = A cos v/t + B sin v/At.
So, the general solution is

oco m—1

u(x,y,t Z Z ( sin (nmwz) sin (mmy)—sin (mmx) sin (nwy)) (Anm cos T/ n? + m?t+ By, sinmy/n? + mzt)

m=2 n=1
(c) At t =0, we get that

co m—1

u(z,y,0) = f(z,y) = Z Z Apm nm (2, Y)

m=2 n=1

w



Using formula (7.4.14), we get that

A ffRbendedy
nm f fR d.T dy
oy J Foum dy da
A =
Iy g2 dy de

1 x
A =
nm 4J€ ]ﬁ F(@,y)bnm (2, y) dy du

Taking the time derivative at time 0, we get that

oo m—1
u(@,9,0) = g(x,9) = > Y Bumm V12 +mP¢nn(x,y)

m=2 n=1

4 1 T
Bnmzi x, nm \ L, dy dx
——— | | sweutenay

1
—5///(uf+ui+u§+u§+u2)dv
Q

/// 2ty + 2Ug Uzt + 2UyUyr + 2uz Uz + 2uug) dV

Problem 8.

dE

From the PDE, we get
= /// (UtUgy + Uplyy + Utz — U F UpUgy + UyUys + UzUzy + uty) AV
Q

B /// (Uttgy + Uzt + Uy + UyUyr + Utthzy + Ustzg) AV
Q

- ///Q ((utum)m + (upuy)y + (utuz)z) av
- ///QV (U, uptty, wu) dV

Using the divergence theorem, this is

= (U U, Uy, Uglh,) - DAA
bdry Q2
= // wVu - ndA

bdry Q

From our boundary conditions, we know that Vu - n = 0 everywhere on the boundary, so this integral is
zero; hence F is a constant.
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Problem 7.7.1. By separation of variables and solving ODEs, exactly like in Section 7.1, the general
solution is given by

u(r,0,t) Z Z I mnr (C’mn sin (c )\mnt) + D, COS (c /\mnt)> (Apn sinmé + By, cosmb) .

m=0n=1

We now solve for the coefficients. Since u(r,8,0) = 0, one can eliminate the cos (c\/ /\mnt) terms, and

u(r, 0,1t) Z Z Jm mnr sin (c )\mnt) (Apn sinmé + By, cosmf) .

m=0n=1

The initial condition tells us that

Z Z Im mnr eV Amn - (Amn sinmb + By, cosmb) = a(r) sin 36,

m=0n=1

with )
z
)\mn = (M)
a

Thus, by the orthogonality relation with respect to 6 (or by observation), one has B,,, = 0 for all m, and
Apmn = 0if m # 3. When m = 3 the orthogonality relation for the Bessel function tells us that

Jo o (VAznr)rdr
C\/)\gn fo J3 A7) 7 dr’

ASn

and

u(r,0,t) ZAgnJg Agnr) sm( /\gmt) sin 36.

Problem 7.7.2(a)(c). By separation of variables and solving ODEs, exactly like in Section 7.1, the general
solution is given by

u(r, 0,1t) Z Z I mnr (C’mn sin (c )\mnt) + D, COS (c )\mnt)) (Apn sinmé + By, cosmb) .

m=0n=1

In this problem the A, are slightly different however: the condition u,(a,6,t) = 0 tells us that

(ymn ) 2
a
where 4, are the zeros to J/, (v/Ar) = 0.
(a) This part is almost the same as Problem 7.7.1, except sin is replaced by cos in the initial condition.
The answer is

u(r,6,t) Z AspJs( /\5nr) bln( )\5,Lt) cos 50



where u
fo a(r)Js(v/Asar)r dr
A5n =

vV Amn foa J2(V Asnr)rdr

(c¢) In this case u;(r, 0,0) = 0 tells us that the terms with sin(cv/A,,t) vanishes, and

u(r,0,t) = i i I (V AmnT) cos (c )\mnt) (Apn sinm@ + By, cosmb) .

3
I
<}
3
Il
—

The initial condition tells us that

a(r,0) = u(r,6,0) Z Z I ( mnr ) (A sinmé + By, cosmb)

m=0n=1
and we apply orthogonality to see that
A o foa 7, 0) T (V Amn )7 sin mf drdf
o fo J2 2 (v/An )1 sin? mé drdf
B fo 7,0) I (v Apunr )1 cos mb drdf
o fo J2 2 (v/Amnr)r cos2 mf drdf '

Problem 7.7.6(c). The solution to this problem is exactly the same as Problem 7.7.1, except with slightly
different eigenvalues \,,,. We can copy the work done in Problem 7.7.1 if we show that there are infinitely

many solutions A of order one to
Jm(VAa) — VAT, (VAa) =0,

and the solutions are all positive. A way to do this is to apply the mean value theorem with respect to the
2er0S Zmp of Jp,. (In fact this argument tells us that the solutions intertwines with the zeros of Jm(ﬁa)

and J! (vAa).)

In summary the answer to this problem is

u(r, 6,t) Z AsnJs( Agnr)sm( /\37,15) sin 360

with
Amn

I (r) T (N Agnr)r dr N (amn>2
vV Amn Jo T2V Ar)r dr’ "\ a ’

where a,,,, are the solutions to the equation J,, (vAa) — vV AJ/, (v Aa) = 0 (of which there are infinitely many
and all positive).

Problem 7.7.7. The setup of this problem is very similar to Problem 7.7.1. The main difference is that
you get a first-order ODE for h after separating variables:

B (t) = —Akh(t).

After doing the same thing as before, the solution to this PDE is

(r,0,t) Z Z T (A Amnr)e 7 * (A, sinml + By, cos mé)

m=0n=1

where
Zmn |2
/\mn =
a

and z,,, are the zeros of J,,. The initial condition tells us that

fr,0) =u(r,0,0) Z Z I ( mnr ) (A sinmé + By, cosmb)

m=0n=1



and we apply orthogonality to see that

7,0) T (v Anr)r sin m@ drdf
fo J2 Nn? )7 sin® mé drdf
r,6)

£
I (VA1) cCOs Ml drdf
2 )

Amn )7 cosZ mé drdf

Amn = f()a

fo

an =
oy J2

Problem 7.7.10. Separate variables u(r,t) = f(r)

D‘

(1)-

ﬁ\w

fh' =

9
ar
g = o (") =
ht) =

e F_ The r equation is

(rf'h)

The time equation is simple to solve and gives

af
"a

df
2+5+)\7‘f—0

Multiplying by r gives

af  df
2 ar 24 _
2 +r ar +Arf=0

Making the transformation z = v/Ar gives us Bessel’s equation of order 0. So,

f(r) = CLJo(VAr) + CoYo (VAr)

But Y} is singular at r = 0, so only the Jo(v/Ar) term can survive. The boundary condition f(a) = 0 will
fix the eigenvalues:

Jo(VAa) =0

If z,, is the nth zero of Jy, then A, = (7") . Then, our general solution is

r,t) = ZanJO(\/)\nT)e_k’\”t
n=1

Plug in the initial conditions to get

u(r, 0) Za”']() (V/Anr)

And so @
Jo Fr)Jo(VAnr)rdr
ap = a
fo JE(VAnr)rdr

Since zero is not an eigenvalue (because Jy(0) # 0), all terms in the series will decay as t — oo, and so
tlim u(z,t) = 0.
—00

Problem 7.9.1(b). Separate variables; the 6 equation as usual gives us u = m? and eigenfunctions cos m6@
and sinm@. The r-equation looks like

d2f
2 2 2ve
T—dr + (At =m)f=0

df
2+rd—



The solutions to this are Bessel functions of order m, but the requirement that |f(0)] < co eliminates the
Y, solutions. So, f(r) = c1Jm (\f r), and the other boundary condition fixes our eigenvalues:

Jm(VAa) =0

which gives us a set of eigenvalues A,,,. Then, the z-equation is % = Ah, with h(H) = 0. A good choice
of eigenfunctions is sinh (v Amn(z — H)) and cosh (v Amn(z — H)), as our boundary condition eliminates the
hyperbolic cosine term. So the general solution now looks like

u(r,0,z) = Z Z Im (v Amnr) sinh (v/ A (2 — H)) (Amn cosmb + By, sinmb)

Plug in z = 0 to get

u(r,6,0) = )sin 76 = Z Z Im mnr )sinh (= v/ AmnH ) (Amn cosmb + By, sinmf)

m=0n=1

Matching coefficients, we get that all A,,,’s are zero, and that B,,, is non-zero only for m = 7. Then,

r) = Brysinh (—/Arn H)J2(\/Azar)

So,
1 foa a(r)Jz (v Azpr)r dr

B a
T sinh (—vA7 H) [y J2(/ Amnr)rdr

u(r, 0, 2) Z B J7( )\7nr) sinh (v/A7n(z — H)) sin 70

Problem 7.9.2(c). The #-equation gives us eigenvalues p = m , with m starting at 0, and eigenfunctions

cosm@. The z-equation can also be solved easily; it looks like 4 P Lh — \h, with boundary conditions h/(0 (0) =
W (H)=0. So

The r-equation looks like

QdZJ_A'_ df_|_< (m)ZTQ—mQ)fzo

dr? dr H
Or, if we make the transformation w = "7*, it becomes
a2 f df
2 2 2y _
wig g tw df+(w—m)f70

The solutions are K,, and I,,, but K,, is singular at the origin, so only I, sticks around, and we get
nwr
1) =1 (57)

Except when n = 0, in which case the equation is equidimensional and we get f(r) = ™. And if n = m =0,
then we get just a constant. The general solution is then

o0 o0 o0
mo nwr nrz
u(r,0,z) = Ago + g Aor™ cosmb + E E Apindm (7> coS v cos mb

m=1 m=0n=1



Plugging in the last boundary condition, we get that

% =p3(0,z) = i mAm0a™ cosmb + i i %Amnlﬁn (%) cos % cos mb

m=1 m=0n=1

For m and n both non-zero, we get

™ H
A = 4 / / B(0, z) cos N2 cosmé dzdf
o Jo H

" 2! (nwa/H)

For m =0 and n # 0, we get

2 " " nmwz
Ay = — = e
O w2 I (nwa/H) /0 /O B8, z) cos = ddf

For m # 0 and n = 0, we get

2 ™ H
Amo = W A A /8(9, Z) cos mb dzdf

Our boundary condition gives us no requirement on Agyg. This makes sense because only derivatives have
been specified in the problem, so the solution can only be unique up to a constant.



Math 241 (Spring 2019) Homework 9 Solutions

April 18, 2019

Problem 7.9.3(c). By separating variables u(r, 6, z,t) = f(r)q(0)g(z)h(t) one gets the ODEs

d df d? d2
"dr (Tdr)HMQ_w)fZO = gz = A= (fl—];:—)\kh.
f'(a) =0, [f(0)] < o0 q(0)=q'(7/2)=0 9(0) =g(H) =0

After solving these ODEs one gets the general solution

oo o0 oo l
u(r, 0, z,t) Z Z ZAmnlJQm 1(v/Iemn) cos((2m — 1)0) sin (IZZ) e~ (Hmn+(lm/H)?)kt

m=1n=1 =

[

where

Ymn

Hmn = (T) y Ymn are the zeros to J;T(z)

The coeflicients can be solved using the initial condition:

o oo oo ) l Py
f(r,0,z) s ZZ ApniJom—1(y/lmnr) cos((2m — 1)) sin <I7;) ,

SO

A fo W/Q fo 7,0, 2)J2m—1(\/Hmnr) cos((2m — 1)0) sin (%)rdrd&dz
" fo W/Q o 21 (VHmnr) cos?((2m — 1)0) sin® (52) r drdodz

Finally, note that
lim w(r,0,z,t) = 0.

t—o00

Problem 7.9.4(b). Since the initial condition is independent of § we do not need to consider this (see
Problem 7.10.1(c) below to see why heuristically). By the same steps as in the previous homework

u(r, 0, z,0) ZZA"J cos (mrz) Jo(v/ AojT)e Aokt

n=0 j=1

e (2 ()

and yo,, are the zeros of J)(z). Using the initial condition

2) = i iAnj cos <%> JO(W)

n=0j=1

where

and by orthogonality the coefficients are

B fo% foa f(r,z cos(

YT s (5

2) Jo(v/Aos7)r drdz.
) JE(\/ Aojr)rdrdz




Problem 7.10.1(c). By the separation of variables u(p, 8, ¢,t) = f(p)q(0)g(¢)h(t) done in Section 7.10,
one gets the following:

d o df 2 o d . m? _ d%h
dp(p dp>+(/\p —pu)f=0 d(b(s1n¢d¢> (usm(bsind))go ﬁz—)\czh
fla) =0, [f(0)] < o0 19(0)] < o0 K (0)=0

and ¢ satisfies the periodic ODE with eigenvalues m? and eigenfunctions cos mé and sinmf form = 0,1,2,.. ..
Note that g satisfies the Legendre ODE, and f satisfies the spherical Bessel’s ODE. Thus

9(¢) = Py (cos ¢), n>m,
F(p) = c1p™ 2 Jni1 2 (VAp).

The condition f(a) = 0 implies that

2
A=Ak = (LH/Z’f)
a

where 2,112 are the solutions to the spherical Bessel equation. As for h, the usual considerations tells us

that
h(t) = ¢1 cos (C\f)\t).

Thus the general solution is

u(p, 0, ¢,t) Z Z Zcos(c )\,,kt) *1/2Jn+1/2( AnkP) (Anmi cosmO + By sinm) Pl (cos ¢).

m=0n=m k=1

The initial condition tells us that

F(P,¢) =u pa0 ¢v Z Z ZP 1/2 Jn+1/2 nkp)(Anmk Cosm9+Bnmk smm0) (COS ¢)

m=0n=m k=1

Since F' does not depend on 6 we can assume A,,mix = Bpme = if m # 0. If m = 0 then B,,g; sin00 = 0 so
we just need to compute A,gx. By orthogonality the answer is

p,9 (ba ZZAHOk COS( \/ t) 1/2 Jn+1/2 \/ p COS(b

n=0 k=1

with
Jo Jo Fp.0)p™ 2 T i12(V Ankp) P (cos ¢) p? sin ¢ dpd
fo fo 1/2Jn+1/2(\/m))2(135”(cos¢))2p2 sin g dpdg

Problem 7.10.2(c). Separate variables u(p, 8, ®,t) = f(p)q(0)g(¢p)h(t), and get the following equations:

An()k

4 [pzd‘q + (A =) f =0

dp dp
d dg 2
@ {smqﬁ ¢} + <usin¢> S:Z¢) g=20
dh
T —kMAh(t)

The ¢(f) equation gives us the m? eigenvalue and eigenfunctions of cosm@ and sinmf. The ¢ equation
fixes eigenvalues [y, = n(n + 1) with eigenfunctions g(¢) = P (cos¢) (only for n > m).The p equation
has solution f(p) = p‘l/QJnH/g(\ﬂp) and fixes eigenvalues \,,; through the condition Jn+1/2(m = 0.
Finally, the time equation has the same exponential solution as always, and the general solution is



u(p, 8, d,t) Z Z Z P2 i1 /2(V A ) (A €08 mb + By j sinmf) Pr* (cos ¢)e™ kAmngt

m=0n=m j=1
The form of the inital condition eliminates all of the B,,,;’s, and leaves only the A;,;’s, so we get

u(p,,,1) ZZAWP /Jn+1/2( )\1an)COS(Q)Pé(COS@e_k/\IMt

n=1j=1
And plugging in the initial condition gives that

A o Sy (o, d)p™ 2 T i1 j2(y/Aangp) Po(cos ¢)p? sin ¢ dpd
Inj — -
’ Jo fo P J2+1/2 Anjp) (P (cos ))?p? sin ¢ dpde

Problem 7.10.10(a). As shown in example 7.10.6, the radial equation gives solutions p™ and p~"~
Outside a sphere, we reject the p™ solution, and we get a general solution that looks like

1

[o olENe o]

u(p, 0, ¢) = Z Z p~ " [Apm cosmO + By, sinmé] P (cos ¢)

m=0n=m
Our boundary condition tells us that

(e lNe o}

Z Z a” " [Apm cosmb + By, sinmf] P™(cos ¢)

m=0n=m

And hence we get that

g Jo |7, F(8,¢) cosmf Py (cos ¢) sin ¢ depdf
Jo I 0052 ml(Pm(cos ¢))? sin ¢ dpdb

Anm =

nt1 Jo J". F(0,¢) sinmBP}" (cos ¢) sin ¢ dpdb

Bum = a Jo J7, sin® mf( Py (cos ¢))? sin ¢ depdf

Problem 7.10.11. Separate variables; the 6 equation now gives eigenvalues of (2m)? and eigenfunctions
sin2mf. The ¢ equation gives P>™(cos ) and the radial equation gives only p" since we are inside the
sphere. So,

u(p,0,6) = > Y Bump"sin (2m)P" (cos ¢)

m=1n=2m
fo [T _F(0,¢)sin (2m8) P2™ (cos ¢) sin ¢ dedf

Bum = a fo ‘L sin® 2m9)(P2m(cos¢)) sin ¢ dgdf
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Problem 8.2.1(d). We solve for the equilibrium ug(z):

0=t Ly w(0) = A, uw(L)=B
~ a2 T -5 -
This gives us
x? B—-A L
- el A
up(r) 2+( i3 +2>x—|—
Now we consider v(z,t) = u(z,t) — ug(z) with corresponding PDE
d d?
S =k 00,8 =0, v(L,t) =0, v(x,0) = f(x) — up(a).

By doing computations exactly like in Section 8.2, one gets

. nTT _ 2
A, sin e k(nm/L)"t

NE

v(x,t) =

)

1

nmwxr

Ap == (f(z) —ugp(z)) sinT dx.

v

Then u(z,t) = v(z,t) + ug(z), where ug(x) and v(z,t) are as above.
Problem 8.2.3. We solve for the equilibrium wg/(r):

ko [ o
0= o <7“8uf> +Q(r), u(a) =T.

By the fundamental theorem of calculus,

auE

"s
B =, pee
and so A
T—uEw>=uEw>—uEw>:-:/ E/’gwakmL
T 0
Hence

ug(r)=T+ /Ta % /0“ %Q(s) dsdu.

Now we consider v(r,t) = u(r,t) — ug(r) with corresponding PDE

dv_ﬁg ov
dt ~ ror

Poe) 0 = 1)~ u(r), ofa,t) =0



This is a standard Bessel’s PDE with m = 0, so one gets

0= 3 Ak () e Mo/,
n=1

Jy (£(r) = ug(r)) Jo (34er) rdr

An = a
Jo I8 (Pe=r) rdr

Then u(r,t) = v(r,t) + ug(r), where ug(r) and v(r,t) are as above.

Problem 8.3.1(d). We pick the linear function

since this satisfies w(0) = A and w(L) = 0. Now we consider v(z,t) = u(z,t) — w(x) with corresponding

PDE )
d d
v _ &
dt dx?

The eigenfunctions are sin nwa/L for positive integers n. By the method of eigenfunction expansion we write

00
nmwx
E SlIl —_—

and solve for A, (t). To do this we can use Equations (8.3.7) and (8.3.9) and (8.3.10) to see that

+ Q(z,t), v(0,t) =0, v(L,t) =0, v(z,0) = f(z) —w(x).

t
An(t) :An(o)e—(nw/L)zkt+e—(nw/L)2kt/ qn(7_)6(77,71'/L)2ktd7_7

0
T fo (x,7)sin(nmz/L) dx
al7) = fOL sin?(nrx/L) dx
B fOL (f(z) — w(z))sin(nrz/L) dx
An(0)= fOL sin?(nmz /L) dz

Then u(z,t) = v(x,t) + w(x), where w(z) and v(x,t) are as above.
Problem 8.3.6. We pick the linear function
w(r)=1-— E,
™

since this satisfies w(0) = 1 and w(w) = 0. Now we consider v(z,t) = u(z,t) — w(z) with corresponding
PDE

dv  d*v .
E dz2 te Sln5$a 'U(O,t) =0, U(L,t) =0, U(.Z‘,O) = _w(x)'

The eigenfunctions are sin na for positive integers n. By the method of eigenfunction expansion we write

= Z A, (t) sinnx
n=1

and solve for A, (t). To do this we can use Equations (8.3.7) and (8.3.9) and (8.3.10) to see that

A, (0)e="t if n # 5,
An(t) = —25¢t | e~ (23t T
As(0)e + & (B —1) ifn=05,
T d 9
A0 = ‘foﬁ(ﬁf ade " e
0

Then u(z,t) = v(z,t) + w(z), where w(z) and v(z,t) are as above.



Problem 8.3.7. Let v(z,t) = u(z,t) — %t; then our PDE becomes
v vz

(TR
with the boundary conditions v(0,t) = v(L,t) = 0 and initial condition v(z,0) = 0. We can solve this using
the method of eigenfunction expansion:

nmwx
E an(t sm—

n=1

L
an(t) — an(o)e—k(nﬂ/L)zt + e—k(nﬂ/L)Qt/ q—n(T)ek(nﬂ-/L)zT dr
0

Note that the initial condition tells us that all a,,(0) = 0, and the form of @Q gives us that

2 L
Tn(T) = ﬁ/o xsin?dx

2
Tn(1) = —(=1)"*!
T(r) = —(-1)
So, we get together
2kL2(—1)"t1
n t = —

And the solution to the original problem is u(z,t) = v(x,t) + 2.
Problem 8.6.3(c). Split up u = w3 + ug, with u; solving Laplace’s equation with the inhomogeneous

boundary condition, and us solving Poisson’s equation with a homogeneous boundary condition. First, we
can solve for u; easily; the solution is

w1 = ag + Z r" (a, cosnb + by, sinnf)
n=1
- i f(0)do
@0 = 2

1 ™
ap = — f(0) cosnb do
™

—T

—T

by, = 1 f(0)sinnf db
™ -7

For uy, we can solve the problem using two-dimensional eigenfunctions; the two-dimensional eigenfunc-
tions of the Laplacian on the inside of the disk are

o =T (5 2) { S |

With z,,, being the nth zero of J,,, the eigenvalues are (Z”%)2 Hence, we get

r .
(zmna> (amn cosmb + by, sin mb)

a? fﬂ Jo Q@Jm (zmn %) cosmbr drdd

amn N mn f_ fo J?n (Zmn )C082 mgrdrda
b a? f_ﬂ fo QJm (Zmn )smm&rdrd@
T 2 STy TE (zmnt) sin® mO v drdf



Problem 8.6.6. Split it up again: let u = w1 + ug, with u; solving Laplace’s equation with inhomogeneous
boundary conditions, while uy solves Poisson’s equation with all homogeneous boundary conditions. Then,
the solution for u; looks like

up(z,y) = Z by, sin (nx) sinh ny

n=1

2 T .
bn—m/o f(z)sinnz dx

For us, the two-dimensional eigenfunctions are
mm
Omn(z,y) = sin (nx) sin Ty

and corresponding eigenvalue A\, = n? + (%)2

So,
ug(x,y) = ; mZ;l U Sin (na) sin m;ry
1 4 [T
Amn = —m I /0 /0 e sin x sin na sin mgy dzdy

Problem 8.6.7. The eigenfunctions of the Laplacian inside this cube are given by

. nmx . mmwy . Jmz
@mnj = sin — sin sin ——

L o w

with eigenvalue

Write the solution as o . .
U(Z‘, Y, Z) = Z Z Z bmnj¢mnj (l‘, Y, Z)

Plugging this back into Poisson’s equation gives us that

oo 00

Q(xayyz) = Z Z_bmnjAmnj¢mnj(x7y7Z)

n=1m=1j=1

Which gives us that
b C -1 fff Q¢mnj av
T Mg [JT Sy AV

—1 8 W L nTT mmy jmz
binnj = 5 5 — / / / Q(z,y, z) sin —— sin sin — dxdydz
(2m)? 4 (mm)® 4 (i7) LAEW Jo Jo Jo L H w

SE
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Problem 10.2.1. Start with
u(z,t) :t/‘ {A(w)coswme‘kWQt+,B(w)shﬂauﬂe—kw2ﬂ dw
0

Wx —iwxT —iwx
e +e

u(z,t) :/ A(w)ie—kw%dw_F/ B(w)ie*kw” dw
0 2 0 21
A B ] 2 <A —1B i 2
u($7t) = / Me—lwre—kw tdw +/ Mezwme/—kw t dw
0 0

u(z,t) :/ C(w)e*i“’we*k“’% dw
with ) 1B )
w)+iB(w
—_— ", w>0
Clw) = 2 ’
( ) {A(w)—ng(w)7 w<0

From which it is clear that C'(—w) = C(w), if A(w) and B(w) are real.

Problem 10.2.2. To show u(z,t) is real, we need to show u(z,t) = u(x,t).

u(z,t) = / c(w)e—wre—kw?t dy,

—00
c© R
= / c(w)ewtefk‘” tdw
— 00
o0 . 2
:/ c(—w)ete ™t dy
— 00
Making a change of variables w — —w, we get
o0 . 2
= c(w)e*“"te*kw tdw
— 00
= u(z,t)

Problem 10.3.1.

/ [e1f + cagle™? dx

— 0

Fleif +cag] =

— 00 — 00

[cl fe“T dx + ¢y / ge dx}
(

=1 F(w) + c2G(w)



Problem 10.4.3. (a) Let U(w,t) be the Fourier transform of u(x,t). Then U satisfies

oU
= = — kWU —iewU
ot

U(w,0) = F(w)

We can solve the ODE: ..
U(w, t) _ F(w)e—kw te—wwt

. . 2y .2 2y
The inverse Fourier transform of e %"t ig e /4kt kWt ig

(by the convolution theorem)

, so the inverse Fourier transform of F'(w)

_(z—y)?

Akt dy

1 oo
Varkt /700 fw)e

Then, by the shift theorem, u(z,t) is this shifted by —ct:

(ztct—y)?
- Akt

T;kt[ f(y)e dy

u(x,t) =

Sketch of heat equation with convection (k=c=1)

—_ 0.3
0.5 —_—t=1
—_— 2
— =5
— t=10
0.4 — 30
0.3
0.2
0.1
0.0
—40 -30 -20 -10 0 10 20 30 40

Problem 10.4.4. (a) Let U(w,t) be the Fourier transform of u(x,t). Then we get

ou 9
E——k‘w U—-~U
U(w,0) = F(w)

Which has the solution

By the convolution theorem, we get

1
varkt

o0
u(e, t) = / Fly)e @0 kg
—0o0



(b) A simplifying transformation would be to let v(z,t) = e’'u(x,t), then you would get the regular
diffusion equation in v.

Problem 10.4.7(a)(b). (a) Let U(w,t) be the Foruier transform of u(z,t). Then we get

ou 4
N = tkw?U
U(w,0) = F(w)

Which has the solution o
U(w,t) — F(w)ezkw t

Hence,
u(zx,t) = / F(w)eik‘”%e*i‘” dw

—0o0

If g(z) is the inverse Fourier transform of ei*’t, then we get (by the convolution theorem)

ue) = o [ swigte = v)dy

g(a:) _ / eikw?’tefiwm dw
— 00

Problem 10.6.3. Since y is the variable which has two homogeneous boundary conditions (at infinity), we
Fourier transform u(z,y) in y to get U(z,w). Then, we get

0*U
ﬁ _W2U = 0

As shown in the book, this means that U takes the form
Ulz,w) = Gw)e«lv

where G(w) is the Fourier transform of g(y). Also shown in the book is that the inverse Fourier transform
of e~ 1¥l¥ is 22 (they have done it with = and y switched). So,

x24y?
1 [ 2z
ulzr, = 5= Y)——"—"—"5dy
(z,y) 27(/_009(9)932+(yﬁy)2 Y

(b) This form for g(y) just changes the bounds of the integral:
1
T 1
JY) = — ———dy
’U/(:E y) 7_r‘/_11724+>(y7§)2 Y

u(z,y) = % {arctan (y - y)} 1

-1

1 -1 1
u(z,y) = — [arctan (y) — arctan (“)}
™ x x

Here’s a picture (it looks plausible at least, which is always a good sign!)




Problem 10.6.18. Let U(w,t) be the Fourier transform of u(x,t). Then, we get

aQU o 2 92
W = —C W U
U0 =0; T w,0) = Gw)

This has the solution
U(w,t) = a(w) cos(wct) + b(w) sin(wet)

The first initial condition means that a(w) = 0, and the second tells us that b(w) = Glw) g,

wc

U(w, t) _ G(w) sinwct

cw

From the table, we know that the inverse Fourier transform o is

™ {O, || > ct

1, |z|<et

sin wct
f c

Hence,

1 [ 0, |lx—y|>ct
wwt) =5 [ g<y>{ ey

1, |z—y|<ct

x+ct
u( t) = = / o(y) dy

—ct



