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Part 1

Using the math you already know



1 Functions

If we count AB calculus as a pre-requisite and pre-calculus/trigonometry is a pre-
pre-requisite, then functions and their graphs are a pre-pre-pre-requisite! But... that
doesn’t mean that most of you are sufficiently good at dealing with these. Recognition
of basic types of functions is crucial for being able to handle material at the pace and
level you will need. So is the ability to go back and forth between analytic expressions
for functions and their graphs. So is number sense: knowing approximate values
without stopping for a detailed calculuation.

Because of the preliminary nature of this material, I am not going to write compre-
hensive notes on it. Instead, I will assign some online homework to make sure you
are where you need to be and will refer you to sections of the textbook to brush up.
Here are the key concepts and vocabulary from Section 1.1 of the textbook. Know
these!

e domain

e range

e notation for piecewise defintions
e absolute value function

e greatest integer function

e increasing function

e decreasing function

e cven function

e odd function

Suggested reading if any of this is unfamilair: Sections 1.3 and 1.6 of Hughes-Hallett
et al., Calculus, 5th edition.

If too much of this is unfamiliar, you may be in the wrong course!



1.1

Graphing

Begin by reading Section 1.2 of Thomas, paying particular attention to the following
topics: composition of functions; shifting a graph; scaling a graph; reflecting a graph
and reflectional symmetry. Also please skim Sections 1.3 and 1.4, though we will not
be emphasizing these.

Tips on graphing an unfamiliar function, f

Is the domain all real numbers, or if not, what is it? If the function has a
piecewise definition, try drawing each piece separately.

Is there an obvious symmetry? If f(—z) = f(x) then f is even and there is
a symmetry about the y-axis. If f(—z) = —f(x) then f is odd and there is
180-degree rotational symmetry about the origin.

Are there discontinuities, and if so where? Are there asymptotes?

Try values of the function near the discontinuities to get an idea of the shape —
these are particularly important places.

Try computing some easy points. Often f(0) or f(1) is easy to compute. Trig
functions are easily evaluated at certain multiples of .

Where is f positive? Where is f increasing (where is f/ > 0)7 Where is f
concave upward (f” > 0), versus downward (f” < 0)?

Where are the maxima and minima of f and what are its values there?
Is f defined everywhere? If not, what is the domain?
What does f do as x — oo or £ — —00?

Is there a function you understand better than f which is close enough to f that
their graphs look similar?

Is f periodic? Most combinations of trig functions will be periodic.



1.2 Proportionality, units and applications

Another skill most students need practice with is writing formulas for functions given
by verbal descriptions. For example, knowing that an inch is 2.54 centimeters, if f(x)
is the mass of a bug x centimeters long, what function represents the mass of a bug
x inches long?

(a) 2.54f(z)
(b) f(x)/2.54
(c) f(2.54z)
(d) f(x/2.54)

It helps to think about all such problems in units. Although inches are bigger than
centimeters by a factor of 2.54, numbers giving lengths in inches are less than num-
bers giving lengths in centimeters by exactly this same factor. Writing this in units
prevents you from making a mistake:

1in r
254 cm 254

This shows that replacing x by z/2.54 converts the measurement, and therefore (d)
is the correct answer. OK, maybe that was too easy for you, but when the problems
get more complicated, it really helps to do this.

T cm X

n.

Some more helpful facts about units are as follows.

1. You can’t add or subtract quantities unless they have the same units.
2. Multiplying (resp. dividing) quantities multiplies (resp. divides) the units.

3. Taking a power raises the units to that power. Most functions other than powers
require unitless quantites for their input. For example, in a formula y = e*** the
quantity *** must be unitless. The same is true of logarithms and trig functions:
their arguments (inputs) are always unitless.

4. Units tell you how a quantity transforms under scale changes. For example a
square inch is 2,542 times as big as a square centimeter, and a Netwon (kilogram
meter per second squared) is 10° dynes (gram centimeter per second squared).
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Often what we can easily tell about a function is that it is proportional to some
combination of other quantities, where the constant of proportionality may or
may not be known, or may vary from one version of the problem to another.

EXAMPLE: if the monetization of a social networking app is proportional to the square
of the number of subscribers (this representing perhaps the amount of messaging
going on) then one might write M = kN? where M is monetization, N is number of
subscribers and £ is the constant of proportionality. You should always give units for
such constants. They can be deduced from the units of everything else. The units
of N are people and the units of M are dollars, so k is in dollars per square person.
You can write it: k $/person?.

ExXAMPLE: The present value under constant discounting is given by V(t) = Voe
where Vj is the initial value and « is the discount rate. What are the units of o?
They have to be inverse time units because at must be unitless. A typical discount
rate is 2% per year. You could say that as “0.02 inverse years.”

Often quantities are measured as proportions. For example, the proportional increase
in sales is the change is sales divided by sales. In an equation: the proportional
increase in S is AS/S. Here, AS is the difference between the new and old values of
S. You can subtract because both have the same units (sales), so AS has units of
sales as well. That makes the proportional increase unitless. In fact proportions are
always unitless.

Percentage increases are always unitless. In fact they are proportional increases mul-
tiplied by 100. Thus if the proportional increase is 0.0183, the percentage increase
is 18.3%. In this class we aren’t going to be picky about proportion versus percent-
age. If you say the percentage increase is 0.183 or the proportional change is 18.3%,
everyone will know exactly what you mean. But you may as well be precise.

One last thing about units (really should have been point number 5 above) is how
they behave under differentiation and integration. The derivative (d/dx)f has units
of f divided by units of . You can see this easily on the graph because it’s a limit
of rise over run where rise has units of f and run has units of x. Likewise, [ f(z)dx
has units of f times units of . Again you can see it from the picture, because the
integral is an area under a graph where the y-axis has units of f and the x-axis has
units of, well, x.
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Inverse functions

You can read about inverse functions is Section 1.6 of the textbook. The concept
appears to be harder than most people realize. For example, last year I gave a
problem to compute a formula for the inverse function to sinh(x), the hyperbolic sine
function. This was already not easy (only half the students got it) but then I asked
them to find a number u such that sinh(u) = 1. Almost no one got it, despite that
fact that this was supposed to be the easy part! They just needed to plug in 1 to their
inverse sinh function. By definition, sinh™'(1) is a number u such that sinh(u) = 1.
The moral of the story is, don’t lose sight of the meaning of an inverse function when
doing computations with them.

The textbook tells you how to compute them and also some things to watch out for:

e When does an inverse function exist?

e What are the domain and range of the inverse function?

When a function is not one to one, you can define an inverse if you restrict the range
of the inverse. There is a standard way this is done with inverse trig functions; please
read it on page 48. Note: the standard inverse trig functions have names (arcsine,
etc.) and notations (sin™' and so forth). Note also, that the notation f~! for the
inverse function to f is TERRIBLE. It is the same as (and therefore confusable with)
the notation of the reciprocal of f. How stupid is that? But it’s widely accepted, so
we're stuck with it. Another example of a standard choice of inverse function is the
inverse of the squaring function.

Think: how is the squaring funtion not one to one, what is the name of
its standard inverse, and what choice is made to remedy its lack of being
one-to-one?

Lastly, think about the units of an inverse function. If f takes units of x as input
and produces units of y, then to answer the question “f of what is equal to y?” you
need to input a quantity in units of y and answer in units of . In other words, the
input and output units are switched.



1.3 Estimating and bounding

Estimating is non-rigorous. We want to understand a quantity f(z) that is hard to
compute, but we can compute a quantity f(z) that is near f(z). It’s a little subjective
to say f(w) ~ f(x), if we can’t say precisely what is meant by the symbol =, but it is
very useful nonetheless. One of the most common methods of approximation is the
linear approximation via the derivative. This is discussed at length in Section 3.11,
too much length actually. The introduce the term differential which we won’t use.
We will however use the term linearization:

Definition: The linearization of a differentiable function f at the point
a is the function ¢(x) = f(a) 4+ (x —a)f'(a) (see page 203 of the text). In
pictures £(z) is the function whose graph is a line tangent to the graph of

f at the point (a, f(a)).

How close is ¢(x) to f(x) when z is close to a? Obviously it depends how close x
is to a. In the middle of the course, when we study Taylor polynomials, we’ll see
that ¢(x) — f(x) is roughly a constant times (x — a)?. Squaring makes small numbers
even smaller, so when x is within 0.01 of a, then ¢(x) should be within a few ten-
thousandths of f(a). We can’t get more precise than this at present, but it’s good to
keep in mind.

y=I(x)
y=f(x)

fla)




Bounding

Bounding is rigorous. To get an upper bound on f(z) means to find a quantity U(x)
that you understand better than f(x) for which you can prove that U(z) > f(z). A
lower bound is a quantity L(z) that you understand better than f(x) and that you
can prove to satisfy L(z) < f(x). If you have both a lower and upper bound, then
f(x) is stuck for certain in the interval [L(z),U(x)]. It should be obvious that an
upper bound is better the smaller it is. Similarly, a lower bound is better the larger
it is.

In a way, though, bounding is harder than estimating because there is no one correct
bound (well there’s no one correct estimate either, but we usually a particular estimate
we're told to use, such as a linear estimate). Two ways we typically find bounds are
as follows.

First, if f is monotone increasing then an easy upper bound for f(x) is f(u) for any
u > z for which we can compute f(u). Similarly an easy lower bound is f(v) for any
v < z for which we can compute f(v). If f is monotone decreasing, you can swap the
roles of u and v in finding upper and lower bounds. There are even stupider useful
bounds, such as f(x) < C'if f is a function that never gets above C.

EXAMPLE: Suppose f(x) = sin(1). The easiest upper and lower bounds are 1 and —1
respectively because sin never goes aboe 1 or below —1. A better lower bound is 0
because sin(x) remains positive until = 7/2 and obviously 1 < 7/2. You might in
fact recall that one radian is just a bit under 60°, meaning that sin(60°) = v/3/2 ~
0.0866. .. is an upper bound for sin(1). Computing more carefully, we find that a
radian is also less than 58°. Is sin(58°) a better upper bound? Probably not because
we don’t know how to calculate it, so it’s not a quantity we understand better. Of
course is we had an old-fashioned table of sines, and all we can remember about one
radian is that it is between 57° and 58°, then sin(58°) is not only an upper bound
but the best one we have.

Concavity

A more subtle bound come when f is know to be concave upward or downward in
some region. By definition, a concave upward function lies below its chords and a
concave downward function lies above its chords.



Concavity upward (resp. downward) is easy to test: a function f is concave upward
wherever f” > 0 and concave downward wherever f” < 0. If one of these holds over
an interval [a, b] then for x in the interval [a, b] you can tell whether f(x) is greater
or less than the chord approximation

f(b)

fla)

In the figure, the function f(x) is concave down. as long as x is in the interval [a, b],
we are guaranteed to have C'(z) < f(x). On the other hand, when f” < 0 on an
interval, the function always lies below the tangent line. Therefore L(z) is an upper
bound for f(z) when = € [a,b] no matter which point ¢ € [a, b] at which we choose
to take the linear approximation.

EXAMPLE: The function tanz is concave upward on [0,7/2). That means that the
tangent line to tanx anywhere in that interval will be a lower bound for tanz on
the interval. The easiest place to compute the slope of tanz is at * = 0, where
thederivative is sec?(0) = 1. The tangent line at (0,0) is therefore y = . This gives
the lower bound tanx > x. This is in fact VERY close when x is near zero because
tan has a point of inflection there (the tangent line pases through the curve, which is
particularly flat).

10



1.4 Limits

You might not think limits would show up in a calculus course oriented toward ap-
plication. Wrong! There are a lot of reasons why you need to understand the basic
of limits. You should know these reasons, so here they are.

1. The definition of derivative (instantaneous rate of change) is a limit.
2. The number e is defined by a limit.
3. Continuous compounding is a limit.

4. Limits are needed to understand improper integrals, such as the integrals of prob-
ability densities.

5. Infinite series, which we will discuss briefly, require limits.

6. Discussing relative sizes of functions is really about limits.

I would like you to understand limits in four ways:

Intuitive
Pictorial
Formal
Computational

The book does a pretty good job on these, but most students do not learn limits all
that well from a book so I am going to repeat some of that in these notes and in class.
But please do read Section 2.2, 2.3, 2.4 and 2.6.

Intuitive: The limit as  — a of f(z) is the value (if any) that f(z) gets close to
when z gets close to (but does not equal) a. This is denoted lim, ,, f(x). If we
only let x approach a from one side, say from the right, we get the one-sided limit

limg o+ f(%’)

Please observe the syntax: If I tell you a function f and a value a then the expression
lim,_,, f(z) takes on a value (perhaps “undefined” but nonetheless a value). The
variable z is a bound or “dummy” variable; it does not have a value in the expression
and does not appear in the answer; it stands for a continuum of possible values
approaching a.

11



Pictorial: if the graph of f appears to zero in on a point (a,b) as the z-coordinate
gets closer to a, then that is the limit (even if the actual point (a,b) is not on the
graph). Look at Example 2 on page 67 to see what I mean about (a, b) not needing to
be on the graph. We can take limits at infinity as well as at a finite number. The limit
as © — oo is particularly easy visually: if f(x) gets close to a number C' as z — oo
then f will have a horizontal asymptote at height C' (if you allow the function to

1
possibly cross the line and double back, and still call it an asymptote). Thus 3 4+ —,
x

sin &

3e % and 3 + all have limit 3 as © — oco.

X

Formal: The precise definition of a limit is found in Section 2.3. An informal poll of
last semester’s students showed that zero out of 45 remembered covering this in their
previous course (despite the fact it was on most syllabi). The good news is, we don’t
have to spend a lot of time on it. However, you should see it at least once, enough
that you grasp it.

The formal definition makes the intuitive definition precise. The intuitive definition
is that lim, ,, f(x) = L if f(x) gets close to L when x gets close to a. The formal
definition formalizes “gets close to” and “when”. The formal definition is

lim, ,, f(z) = L if for any small tolerance ¢ in the y value there is a
corresponding small tolerance § in the x value such that trapping the x
value in the interval [a — 0, a + ¢] (but z is not allowed to equal a) forces
the y value to be trapped in the interval [L — e, L + ¢]. In symbols:

O0<|z—a|l<d=|f(z)—L|<e.

12



Computational: There are five theorems in Section 2.2. You should know them
all. T hope they seem intuitive to you but they may not. They are not too difficult
however. Computation will be discussed mostly in the next lesson or in recitation
(for example, the square root trick, which is useful for engineering but doesn’t come
up a whole lot in business applications).

Next, skip ahead to Section 4.5, page 256, and read L’Hopital’s rule. Actually you
need to read the whole section: the next page tells you how to iterate L'Hopital’s rule
and the page after that tells you how to deal with indeterminate forms other than
0/0. L’Hopital’s rule is useful and it is also pretty easy to use. The one thing you
need to be careful of is trying to apply it when you don’t have an indeterminate form
to begin with. I put a bunch of questions on this in the pre-homework, which you
can try once you've reviewed Section 4.5 of the text.

Finally, here is a trick that come in handy. When evaluating a limit with a power in
it, try taking logs. If you can find the limit of the log, then exponentiate to get the
limit of the original expression.

Ezample: To find lim,_(1 4+ 22)/6%) we first find the limit of the natural log:
lim, o In[(1 4 22)Y/6?)] = lim, o In(1 + 22)/(3z) = lim,_,o M by L’Hopital’s
rule. This evaluates to 2/3 at = 0. The original limit is therefore €.

Examples of limit computations with rational functions (quotients of polynomials):

2 +3x 1
i tient of pol ials: te lim ——— = —.
(i) Quotient of polynomials: compute I o =5
You can read Example 20 on page 114 to see how to do this or wait till the next
lesson when we use asymptotic equality to handle this type of limit at a glance.
T —3 1

(ii) Factoring out 0/0: compute ilir:la o il

Everywhere except at x = 3 you can factor x — 3 out of the numerator and

denominator. You obtain 5 whenever x # 3, which has the limit (in fact

T +

1
the value) 6 at v = 3.

13



Limits at infinity

You will notice in the worksheets and problems sets that most of our limits are taken
at infinity. The formal definition is a little different but intuitively nothing changes.
We say lim, o, f(z) = L if you can trap the y value within ¢ of L by trapping the x
value above some number M. In symbols, for evey £ > 0 there has to be an M such
that

r>M=|f(x)—L|<e.

Similarly, lim,_, ., f(z) = L if for any ¢ you can trap y in [L — ¢, L + ¢] by trapping
x below some value —M:

r<-M=|f(x)—L|<e.

If lim, . f(x) exists and is equal to the real number ¢, then the graph of f will ap-
proach the horizontal line y = ¢. This occurs, for example, when there is a horizontal
asymptote at height c.

Limits of infinity.

I hope you’ve noticed that the statement that f(z) has a limit as x — a is really the
statement that lim,_,, f(z) = L for some real number L. The other possibility is that
the limit does not exist, for which you are free to use the abbreviation DNE. This can
happen because the value becomes infinite or because it has a jump, or because it is
too wiggly and never settles down. Under certain conditions we say the limit is 4-oc0.
NOTE: THIS IS LINGUISTAICALLY VERY MISLEADING. It is a special case of
DNE. Thus we can say simultaneoulsy that the limit is 400 and that the limit DNE.

To be precise, we say that lim,,, f(z) = 4oo if for any M we can trap the y
value above M by trapping the x value near enough (but not equal to) a. Formally,
lim,_,, f(z) = oo if for every M there is a § > 0 such that

O<|z—al<d= f(x)>M.

You can have a limit at +00 of +00. For example lim,_,, f(x) = —oo when for every
M there is a constant B (I used B because we already used M) such that whenever
x> B we have f(z) < M.

14



One-sided limits.

I hope you read what’s in the book about one-sided limits. We say lim, ,,+ f(z) = L
if you can trap f(z) in any chosen interval [L — ¢, L 4 ¢] by trapping x in an interval
(a,a+9) for suitably chosen 0. The intuition is that f(z) gets near L when x gets near
a approching from the right (on the number line) which is also called approaching
from above (from higher numbers). Note again that you don’t need to look at the
value of f at a itself or at any point to the left of a. In fact the function doesn’t have
to be defined at these places, just on an interval (a,b) for some b > a.

Last remarks on limits:

Continuity: A function f is continuous at a point a if it has a (honest, two-sided)
limit at a and this limit is equal to the function value at a (in other words, now we do
require the point (a, f(a)) to be on the graph along with the other nearby values of
f. Continuity is important later because it comes up in the hypotheses of theorems.
You should read Section 2.5 and decide whether there is anything in there that is not
intuitively obvious.

Limit of a sequence: The limit of a sequence aq,as,as,... is nearly the same
definition as lim, ., f(z) except that instead of a function f defined for every real
value we have a term a,, that is defined only for integer values of n. Nevertheless, we
say lim,, .. a, = L if and only if the terms of the sequence become arbitrarily close
to L as n gets bigger.

15



2 Magnitudes and exponential behavior

2.1 Orders of growth

The topic of relative magnitudes is not covered in the book, though it has some
overlap with Section 7.4. You can and should read Section 7.4 of the text, but I don’t
think the treatment there is adequate. Furthermore, they introduce some notions not
commonly used, which we will avoid. Our goal is to make some vague statements
more precise.

Why are we spending our time making a science out of vague statements? Answer:
(1) people really think this way and it clarifies your thinking to make these thoughts
precise; (2) a lot of theorems can be stated with these as hypotheses; (3) knowing
the science of orders of growth helps to fulfill the Number Sense mandate because
you can easily fit an unfamiliar function into the right place in the hierarchy of more
familiar functions.

We focus on two notions in particular: when one function is much bigger /smaller /closer
than another, and when two functions are asymptotically equal.

Comparisons at infinity

Mostly we will be comparing functions of x as * — oco. Let f and g be positive
functions.

(i) We say the function f is asymptotic to the function g, short for “asymptoti-
cally equal to”, if

lim Lx) =1.
(¢4) The function f is said to be much smaller than ¢, or to grow “much more
slowly” if
lim M =0.
z—00 g(1)

This is denoted f < g.

16



Ezxample: True or false: x < e*? It’s true, in fact 2" < e® for any power n. In fact,
2" < e*M for any n and M. Verbally,

Exponential growth is faster than any power growth.

You might ask how we can be sure of this. For z < e” you can look at the graph,
reason inductively, etc. In general, the easiest way to see it is to use L"0pital’s rule.
Example 4(c) on page 258 of the text is easy to generalize. We'll discuss this a little
when we talk about computation.

Example: True or false: e +x ~ 27 Yes, as you can easily verify:

x

e’ +x

x

lim =liml+—=1
T—00 et T—00 e’

because we have already seen that lim, .., x/e® = 0. Intuitively, e* 4+ x is nearly

identical to e” because x is so small compared to e® that it doesn’t make a difference

when you add it.

Discussion

This is a general rule: the function g(z)+h(x) will be asymptotic to g(z) exactly when
h(z) < g(x). Why? Because (g(z) + h(z))/g(z) and h(x)/g(x) differ by precisely 1,
so their limits do, meaning that the limit of h(z)/g(x) is zero if and only if the limit
of (g(z) + h(z))/g(z) is one.

This is very important when estimating. It allows you to clear away irrelevant terms:
in any sum, every term that is much less than one of the others can be eliminated
and the result will be asymptotic to what it was before.

Ezxample: Find a nice function asymptotically equal to /22 + 1. The notion of “nice”
is subjective, but I mean one you're comfortable with, can easily estimate, etc.

Because 1 < 2% we can ignore the 1 and get v/x2? which is equal to z for
all positive z. Therefore, v/1 + 22 ~ x.

17



It should be obvious that the relation ~ is symmetric: f ~ ¢ if and only if g ~ f.
Formally,

limmzlﬁ limwzl

z—o0 g(x) z—o0 f(x)
because one is the reciprocal of the other. On the other hand, the relation f < g is
not at all symmetric; in fact, it is not possible that simultaneously f < g and g < f.

It is good to have an understanding of the relative sizes of common functions. Here
are some basic facts, which we will come back to in the worksheets.

1. Positive powers all go to infinity but at different rates, with the higher power
growing faster.

2. Exponentials grow at different rates and every exponential grows faster than every
power.

3. Logarithms grow so slowly that any power of Inx is less than any positive power
of z.

Comparisons elsewhere

These same notions may be applied elsewhere simply by taking a limit as x — «
instead of as * — oo. Usually this is done in order to compare how fast f and g go to
either zero or infinity as x — a. At a itself, the ratio of f to g might be 0/0 or co/o0,
which of course is meaningless, and can be made precise only by taking a limit as x
approaches a. The notation, unfortunately, is not built to reflect whether a = co or
some other number. So we will have to spell out or understand by context whether
the limit is intended to occur at infinity or some other location.

For example what about x and 22?7 At infinity, we know x < 2. But what about at
zero, where both go to zero but a possibly different rates. Have a look at the graph
on the next page. You can see that = has a postive slope whereas 22 has a horizontal
tangent at zero. Therefore, 22 < z as x — 0%. You can see it from the picture or
from L’Hopital:
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0.8 H

0.6

0.4+

0.2

Example: What about 22 and z* near zero? Both have slope zero. By eye, 2* is a lot
flatter. Maybe z* < 22 near zero. I don’t think the picture settles it for sure, but
L’Hopital does.
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Ezample: Compare /r and /x near zero. Is one of these functions much smaller
than the other as x — 0%? Here, the picture is pretty far from giving a definitive
answer!

0.84
0.6
D44

0.2

We try evaluating the ratio: f(z)/g(z) = /2 /2'/3 = x1/271/3 = gV/6 Therefore,
)

m ——~ = lim z/4=0
e—0t g(x) 20t
and indeed z'/? < x'/3. Intuitively, the square root of = and the cube root of 2 both
go to zero as z goes to zero, but the cube root goes to zero a lot slower (that is, it
remains bigger for longer).

“For sufficiently large x”

Often when discussing comparisons at infinity we use the term “for sufficiently large
x”. That means that something is true for every value of x greater than some number
M (you don’t necessarily know what M is). For example, is it true that f < g implies
f < g? No, but it implies f(x) < g(z) for sufficiently large z. Any limit at infinity
depends only on what happens for sufficiently large x.

Ezxample: We have seen that Inz < /x —5. It is not true that In6 < /6 —5
(the corresponding values are about 1.8 and 1) and it is certainly not true that

Inl < /1 — 5 because the latter is not even defined. But we can be certain that
In < /7 for sufficiently large z. The crossover point is a little over 10.
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2.2 Exponents and logarithms

While the section on exponents and logarithms is “math you already know,” there
is probably a fair amount of new learning for most of you. However, we will start
with some algebraic identities that are purely review: you are expected already to
know them and will be handling them by MML only. Please begin by reviewing these
identities, which you will find in Sections 1.5 and 1.6 of the textbook. Page 37 in
Section 1.5 has identities involving exponents, page 44—45 in Section 1.6 has identities
involving logarithms, and your MML homework has a bunch of problems on these.

The notation we will use for logarithms in this class is: Inx for the natural log (base
e); lgx for the base two logarithm, and log, for a log to any other base. I may slip
up and use log for In because this is common in my research area. If I'm on the ball,
you shouldn’t see log without a base in this class.

The one most basic fact of all about logarithms is that log, inverts the function
f(z) = b". Therefore log;, 10° = x, meaning that you can tell something about
log,yx just by knowing how many digits = has. If x has n digits then log;,x is
between n — 1 and n.

Computation

Knowing just a few approximate values concerning logarithms allows you to do most
computations without a calculator. On the next page, therefore, please find your very
own Logarithm Cheat Sheet. Surprisingly, many important logs are good to within
1% even when you have only the first nontrivial decimal digit.
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Logarithm Cheat Sheet

These values are accurate to within 1%:

e ~ 2.7

In(2) ~ 0.7
In(10) ~ 2.3
logyy(2) ~ 0.3
log1y(3) =~ 0.48

Some other useful quantities to with 1%:
22
7
V10 ~ 7
V2 ~ 14
1/2 ~ 0.7

T =

&Q

(ok so technically V2 is about 1.015% greater than 1.4 and 0.7
is about 1.015% less than /1/2)

Also useful sometimes: v/3 = 1.732... and /5 = 2.236... both to
within about 0.003%.
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ExaMpLE: What is the probability of getting all sixes when rolling 10 six-sided dice?
It’s 1 in 6'° but how big is that? If we use base-10 logs, we see that log,,(6'%) =
101og;, 6 = 10(log;((2) + logy(3)) &~ 10(.78) = 7.8. So the number we're looking for
is approximatelhy 107® which is 107 x 10%® or 10,000,000 times a shade over 10-®
which is 6. So we'’re looking at a little over sixty million to one odds against.

This is not just a random example, it is always the best way to get a quick idea of
the size of a large power. When the base is 10 we already know how many digits is
has, but when the base is something else, we quickly compute log,,(b*) = a - log;,(b).

ExamMpPLE: Why is the 2.3 on your log cheatsheet so important? It converts back and
forth between natural and base-10 logs. Remember, log;qz = Inz/In10. Thus the
constant In 10 is an inmportant conversion constant that just happens to be closer
than it looks (the actual value is 2.302...). So for example,

e~ 10823 ~ 10%° = 100 x 10°° ~ 3,000 .
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2.3 Exponential and logarithmic relationships

Much of what you learn on this topic will be a kind of insight into the nature of
exponential and logarithmic functions:

e What happens to x when e” doubles?

Subtracting 5 from x does what to 2*7

If y = Az® then how are Inz and Iny related?

e If we change the units of measurement, how does this affect the logarithm of
the measurement?

Why would we be more likely to compute the difference of the logarithms of
measurements of two quantities than the logarithm of a single measure?

I will show you in a minute how to set up equations to answer this kind of question.
But I should point out that some portion of what is to be learned is intuition. For
example, take doubling: you know what doubling feels like, you have an intuitive feel
that doubling x + y is just like doubling x and y separately and adding them, and
this is nearly independent of your knowledge of the distributive law. The knowledge I
am trying to covey about exponential and logarithmic relationships will be imparted
by two in-class activities (SEP 8 and 10) and a hands-on activity (SEP 11).

When answering a question about functional relationships, set up notation that dis-
tinguishes between before and after. For example in the first question above, use
Thefore aNd Taper to denote the two values of x, before and after. If that’s too cum-
bersome then try something like zy and z;. Once you choose the right notation, the
problem almost solves itself. The information “e® doubles” becomes the equation

el = 2e" .
We are trying to capture the relation between xy and x; and it looks as if taking
(natural) logs of both sides will get us there or nearly:
In (') = In (2e™)
simplifies to
T = In2 + Zo -

So there’s your answer: it corresponds to an increase by the (additive) amount of In 2
or roughly 0.7.
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3 Sums and Integrals

Definite integrals are limits of sums. We will therefore begin our study of integrals
by reviewing finite sums and the relation between sums and integrals. This will allow
you to understand approximate values of integrals even when you can’t evaluate the
integral analytically (another instance of gaining number sense!). The first topic,
finite sums, is very elementary but I don’t know any good references so I'm including
a reasonably complete treatment.

3.1 Finite sums

The preparatory homework for this sections deals with the nuts and bolts of writing
19

3
finite sums. If given a sum such as Z o you should easily be able to tell what

explicit sum it represents: how many terms What are the first few and the last, how

would you write it using an equation with ... and so forth. The above sum, for

3 3
example, contains 15 terms and could be written as 3 + 1 + et ITa

It is a little harder going the other way, writing a sum in Sigma notation when you
are given its terms. One reason is that there is more than one way to do this. For
example there is no reason why the index in the previous sum should go from 5 to 19.
There have to be fifteen terms but why not write it with the index going from 1 to 157

Then it would look like .

3
;714-2'

Another natural choice is to let the index run from 0 to 14:

14

3
;::On—i-S'

All three of these formulas represent the exact same sum.

Another difficulty is that you need to know tricks to represent certain patterns with
formulas. Really this is not a difficulty with smmations as much as with writing
a formula to represent the general term a, of a given sequence. Realize that these
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problems are inherently the same: writing the n'" term of a sequence as a function of n
and writing the summand in a summation as a function of its index. The preparatory
homework starts off with sequence writing and then has you do some summations as
well.

Here are some tricks to write certain patterns. The term (—1)" bounces back and
forth between 41 and —1, starting with —1 when n = 1 (or starting with +1 if your
sum has a term for n = 0). You can incorporate this in a sum as a multiplicative
factor and it will change the sign of every second term. Thus for example, to write

thesum 1 —2+3 -4+ --- — 100 you can write
100
Z(_1>n+1 ‘n.
n=1

Note that we used (—1)""! rather than (—1)" so as to start off with a positive rather
than a negative term.

When the sum has a pattern that takes a couple of steps to repeat, the greatest integer
function can be useful. For example, 1+1+1+2+2+2+3+3+3+---+10+10+10

n+2J

30
can be written as Z { 3
n=1

Sequences and sums can use definitions by cases just the way functions do. Suppose
you want to define a sequence with an opposite sign on every third term, such as
—1,—-1,1,—1—1,1,.... You can do this by cases as follows.

I ! n is not a multiple of 3
n = 1 n is a multiple of 3

Although you will not be required to know this, you can use sophisticated tricks to
avoid this kind of definition by cases. One way" is to use the greatest integer function:

ay, = (—1)P=0/31

Notational observations: A sequence denoted aq, as, as, ... could just as easily be
written as a function a(1),a(2),a(3),.... The value of a term a, is a function of
the index n and there is no difference whether we write n as a subscript or as an
argument.

L Another way is to use complex numbers, but you’ll have to ask me about that separately if
you're curious.
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Series you can explicitly sum

We will learn to sum three kinds of series: arithmetic (accent on the third syllable)
series, geometric series and telescoping series.

Arithmetic series

An arithmetic series is a sum in which the terms increase or decrease by the same
amount (additively) each time. You can always write these in the form a,, = A + dn
where A is the initial term and d is how much each term increases over the one before
(it could be negative if the terms decrease). Here you should start the sum at n =0
or else use the term A + (d — 1)n. The standard trick for summing these is to pair
up the first and last, the second and second-to-last, and so on, recognizing that each
pair sums to twice the average and therefore that the sum is the number of terms
times the average term. Here is an example in a particular case and then the general
formula.

29
ExXAMPLE: Evaluate Z n. There are 17 terms and the average is 21, which can be

n=13
computed by averaging the first and last terms: (13 + 29)/2 = 21. Therefore, the

sum is equal to 17 x 21 = 357.

M
GENERAL CASE: Evaluate Z A+ dn. There are M 41 terms and the average is A+

n=0

(dM/2). Therefore the sum is equal to (M + 1)(A + (dM/2)) = A(M + 1) +dM (M +1)/2.

Geometric series

A geometric series is a sum in which the terms increase or decrease by the same
multiplicative factor each time. You can always write these in the form a, = A - r”
where A is the initial term and r is the factor by which the term increases each time.
If the terms decrease then r will be less than 1. If they alternate in sign, r will be
negative. Also, again, A will be the initial term only if one starts with the n = 0
term or changes the summand to A - r"~ 1,
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The standard trick for summing these is to notice that the sum and r times the sum
are very similar. I'll explain with an example.

10
EXAMPLE: Evaluate Z 7471

n=1
To do this we let S denote the value of the sum. We then evaluate S — 4S5 (because
r =4). I have written this out so you can see the cancellation better.

S—45 = 742841124 ---+7-4°
— (28 + 1124 - +7-4°+7-4')

= 7-7-4.
From this we easily get S = (7 —7-41)/(1 —4) =7(4'° - 1)/3.

M
GENERAL CASE: Evaluate ZA Sl
n=1
Letting S denote the sum we have S —rS = A — Ar™ and therefore
1—7"
S=A .
1—7r

Infinite series

No discussion of finite series would be complete without a mention of infinite series.
There is a whole theory of convergence of infinite series that they teach in Math 104.
Here we’ll stick to what’s practical. It should be obvious that 1 +2 4+ 4 + --- does
NOT converge, while 1/241/4+41/8+--- DOES converge, and in fact converges to 1.
There are eleven theorems and tests in the book about when series converge. From a
practical point of view, all you need is two things: the definition, and an example.

Definition: An infinite sum -, a, is said to converge if and only if the

. M
partial sums Sy =)~ a, form a convergent sequence. In other words,

if lim /o0 Sas exists and is equal to L, then 220:1 a, is said to equal L.

EXAMPLE: If a,, = (1/2)" then Sy = 1 — (1/2)M. Clearly limys_,, Sy = 1 so we say
that Y 2, (1/2)" = 1.
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3.2 Riemann sums

In this unit we recap how areas lead to integrals and then, by the Fundamental
Theorem of Calculus, to anti-derivatives.

Areas under graphs

Thankfully, Sections 5.1-5.3 do a nice job in explaining areas of regions under graphs
as limits of areas of regions composed of rectangles. I will just point out the highlights.
This figure shows a classical rectangular approximation to the region under a graph
y = f(x) between the x values of 2 and 6. The rectangular approximation is composed
of 16 rectangles of equal width, all of which have their base on the z-axis and their top
edge intersecting the graph y = f(z). The rectangular approximation is clearly very
near to the actual region, therefore the area of the region will be well approximated
by the area of the rectangular approximation. This is easy to compute: just sum the
width times height. The sum that gives this area is known as a Riemann sum.

Because the height is not constant over the little interval, there is no one correct
height. You could certainly cover the targeted area with your rectangles by always
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choosing the highest point in each interval. That is called the upper Riemann sum
(see page 300). If you go only as high as the least value of f in the interval, that is
the lower Riemann sum, and these rectangles together will surely lie inside your
targeted area. If one always chooses the top-left corner of the rectangle to lie on the
graph then this is called the left-Riemann sum; if one always chooses the top-right
corner of the rectangle to lie on the graph, this is called right-Riemann sum.

If f is increasing over the whole interval [a, b] then a left-Riemann sum will also be
a lower Riemann sum and a right-Riemann sum will be an upper Riemann sum; if
f is decreasing, this correspondence is reversed. The example in the figure is of a
right-Riemann sum, which is also a lower Riemann sum, with a = 2, b = 4, and a
partition of the z-axis into 16 equal strips.

The definite integral is defined as such a limit. Specifically,

/abf(x)dx

is defined as the limit of the Riemann sums as the width of the rectangles goes to
zero. So far we have not invoked the Fundamental Theorem of Calculus, so we are
not connecting this with any kind of anti-derivative. We just have a definition of

Interpretations other than area

Most people who compute integrals are not particularly interested in areas of regions.
Integrals are interesting because the same math that computes the area of a region
computes many other things as well. In general, it represents a total. If f(¢) is a
quantity of something being delivered over time, such as water flow in gallons per
minute, then f; f(t)dt is the total amount delivered between time a and time b. If

f(t) is an acceleration then fab f(t)dt is the total change in velocity from time a to
time b.

The units of fab f(z)dx are the units of f times the units of . You can see this
because the rectangles that make up the Riemann sum have units of height (units of
f) times width (units of z). For example, suppose the z-axis is time (say hours) and
the y-axis is number of people working at the given time; then the area is interpreted

b
as person-hours of work (formerly known as man-hours). Thus / f(z) dx represents
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the total person-hours worked from time a to time b. If the y-axis represents a rate
of change as the z-axis quantity changes, then the area represents total change. For

example if x is time and y is velocity (rate of change of position with respect to time)
b

then [ f(x)dz is the total change in position from time a to time b. The units still

come out right because velocity x time = distance.

Fundamental Theorem of Calculus

The principles allowing us to evaluate integrals are these.

(1) If the partition P is sufficiently fine, the upper Riemann sum U and the
lower Riemann sum L will be very close. In fact the limit as P becomes
finer of U and the limit as P becomes finer of L both exist and are equal
to a number [ which is, by definition, the value of the integral.

(2) Amazingly, you can evaluate I exactly if you can find an anti-derivative
F for the function f. The value of I will then be F'(b) — F(a).

The last part of this definition/theorem is a version of the Fundamental Theorem of
Calculus. I suppose you already know it, but it’s still very cool. Let’s concentrate
though on the other part. It says that we can use integrals to estimate sums or bound
them and vice versa. In the next section we will discuss using U and L to get bounds.
For now, we’ll just say: if P is reasonably fine then any Riemann sum (U, L, or
something in between) is pretty close to I.

A note on signed area: Area is defined to be a positive quantity. However, integrals
compute signed area. Thus fab f(z) dx computes the area between z = a and = = b
below the graph of f but above the z-axis, with area below the x-axis counting as
negative. Be careful about this, especially if there are both positive and negative
pieces of the area.

Anti-derivatives

The FTC says areas are computed by anti-derivatives. Students from previous terms
identified confusion as to exactly what an anti-derivative is. The indefinite integral
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has the notation f f(z) dz and represents any function whose derivative is the function
f(z). Let’s say F'(z) is such a function.

The confusion lies when considering F'(x) as both a function of x and an integral.
What integral has derivative equal to f(z)? Answer: far f(t)dt. Note several things.
(1) = appears as the upper limit of the integral. (2) we changed the name of the
variable of integration to t. (3) the lower limit of integration can be any constant.
It is (2) that is the most confusing: an integral from a constant to a variable is a
function of that variable! If you’re wondering why we changed z to ¢ inside, it’s to
avoid confusion. The variable of integration is a bound variable also known as
a dummy variable. It has no value, rather it is summed over. The value of the
definite integral [,” f(¢) dt depends on the values of b and x and the function f, but
not on the value of ¢; there is no value of t. Please compare to pages 329-330 and
Theorem 4 in the textbook.

32



3.3 Bounding and estimating integrals and sums

Both integrals and sums represent areas: an integral is the area under a curve and a
sum is an area under a bunch of rectangles. You know one area is bigger than another
when the first region completely covers the second region. Based on this, you can
bound an integral by a sum or vice versa. To find a sum that is an upper bound for an
integral, represent the integral as an area and find a sum whose area representation
covers that of the integral. This is just the same as finding in upper Riemann sum.
Similarly you can find a sum to give a lower bound for an integral, namely a lower
Riemann sum. Going the other way, if you have a sum you can find an integral whose
area completely covers that of the sum, which will give you an upper bound for the
sum. Similarly, an integral whose area is completely contained in the rectangles for
the sum will be a lower bound for the sum. We will practice this both ways: first,
given an integral, bound it above and below by sums; secondly, given a sum, bound
it above and below by integrals. At the very end of this section, we’ll see how to
get a good estimate for an integral that is neither an upper nor a lower bound (the
trapezoidal estimate).

Estimating integrals using sums

The upper Riemann sum U is always an upper bound and the lower sum L is always
a lower bound. When the function is monotone (either increasing or decreasing)
then these are left- or right-Riemann sums and can therefore be computed routinely
(though it may be tedious).

2
EXAMPLE: Find ten-term sums that are upper and lower bounds for / dx.
1

1+ a3

The function 1/(1 + x3) is decreasing so the the left-Riemann sum (evaluate f at the
left endpoint of each interval) is an always an upper sum and the right-Riemann sum
is always a lower sum. These sums are easy to represent.

CEDG)

j=0



You can evaluate these by hand as 0.27430... and 0.2354... respectively 2.

Estimating sums using integrals

It is more interesting going the other way. Given a sum, how do we bound it by an
integral? It’s not hard to write an integral to which the sum is approximately equal,
but to ensure that the integral lies above or below the sum we might have to do some
fiddling. We use the fact that if a sum S is an upper Riemann sum for an integral I
then I is a lower bound for §.

1
ExAMPLE: Find upper and lower bounds for the sum 5,, defined by Z T
k=1
The lower bound is easy: if we put a rectangle of height 1/k above the interval
[k, k + 1], for each k from 1 to n, then the union of rectangles is the upper Riemann

n+1
sum for / —dx. Thus S > In(n + 1) and we have found a lower bound for S.
. T

For an upper bound, one trick that works is to use fit all terms but the first of S
underneath the graph of 1/x from 1 to n and then add the extra 1 from the first term.
Thus S <1+ [["(1/z)dz =1+ In(n). To summarize,

In(n+1) <S<1+In(n).

For n = 50 this comes out approximately as 3.93 < .5 < 4.92.

Trapezoidal approximation

Sometimes it can be frustrating using Riemann sums because a lot of calculation
doesn’t get you all that good an approximation. You can see a lot of “white space”
between the function f and the horzontal lines at the top of the rectangles that make
up the upper or lower Riemann sum. If instead you let the rectangle become a right
trapezoid, with both its top-left and top-right corner on the graph y = f(z), then
you get what is known as the trapezoidal approximation. The figure shows a
trapezoidal approximation of an integral f04 f(z) dx with five trapezoids. Note that
the first and last trapezoid are degenerate, that is, one of the vertical sides has length

2If you are able to evaluate the integral exactly as m/(6v/3) + In(3/4)/6 ~ 0.25435... then you
probably shouldn’t be in this course.
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zero and the trapezoid is actually a right triangle. It is perfectly legitimate for one
or more of the trapezoids to be degenerate.

An Approximation of the Integral of
i{x) =4*%x-x"2
on the Interval [0, 4]
Using the Trapezoid Rule
Area: 10.24000000

=
L
F=

Partitions: 5

fix)

Because the tops of the slices are allowed to slant, they remain much closer to the
graph y = f(z) than do the Riemann sums. Because the area of a right trapezoid
is the average of the areas of the two rectangles whose heights are the value of f at
the two endpoints, it is easy to compute the trapezoidal approximation: it is just the
average of the left-Riemann sum and the right-Riemann sum corresponding to the
same partition into vertical strips.

Let’s check what the trapezoidal approximation gives for the integral at the beginning
of this section: ff rlﬁ Adding the formlae for U and L and dividing by 2 yields

1F(1) 1£(0) 1
RS 5—021—&”( 2

35



In words, sum the values of f along a regular grid of z-values, counting endpoints as
half, and multiply by the spacing between consecutive points.

The trapezoidal estimate is usually much closer than the upper or lower estimate,
though it has the drawback of being neither an upper nor a lower bound. However,
if you know the function to be concave upward then the trapezoidal estimate is an
upper bound. Similarly if f” < 0 on the interval then the trapezoidal estimate is an
lower bound. In the figure, f is concave downward and the trapezoidal estimate is
indeed a lower bound.

EXAMPLE: The function 1/(1+23) is concave upward on [1,2] (compute and see that
the second derivative is a positive quantity divided by (1 + 2?)?) so the trapezoidal
estimate should be not only very close but an upper bound. Indeed, the trapezoidal
estimate is the average of the upper and lower previously computed and is equal to
0.25485... which is indeed just slightly higher than the true value of 0.25425....
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Part 11

New topics in integration
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4 Integration techniques

We are now out of Part I of the course, where everything goes back to number sense,
and into a segment of the course that involves learning a skill. It’s a high level skill,
but you're good at that kind of thing or you wouldn’t be here. So relax and enjoy
some clean and satisfying computation. The material corresponds to Sections 5.5, 5.6
and 8.2 of the textbook. The first method ought to be review, and the second ought
to be new, though due to your varied backgrounds some might find both to be review
or both to be new.

Curricular note: in Math 104 they spend a whole lot of time on integration techniques,
nearly half the course (rmember the slide I showed you of the Math 104 final?). These
days you can get your computer (or even your Wolfram Alpha iPhone app) to do this
for you so there isn’t as great a need. But you need some familiarity in order to make
sense of things, and learning the two most pervasive techniques strikes a reasonable
balance.

4.1 Substitution

The most common way of doing a integral by substitution, and the only way for
indefinite integrals, is as follows.

1. Change variables from z to u (hence the common name “u-substitution”)

2. Keep track of the relation between dx and du

3. If you chose correctly you can now do the u-integral

4. When you’re done, substitute back for x
The most common substitution is when you let u = h(z) for some function h. Then
du = I (z) dz. Usually you don’t do this kind of substitution unless there will be an
B (x) dz term waiting which you can then turn into du. Also, you don’t do this unless
the rest of the occurences of x can also be turned into u. If A has an inverse function,
you can do this by substituting h=!(u) for x everywhere. Now when you reach the

fourth step, it’s easier because you can just plug in u = h(x) to get things back in
terms of x.

Please read the examples in Section 5.5 — there are a ton. I will give just one.
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ExAMPLE: Compute /sin”x coszdzr.

Solution: substitute u = sinx and du = cos x dz. This turns the integral into [ u" du
which is easily valuated as u"™!/(n +1). Now plug back in u = sinz and you get the
answer

n+1
You might think to worry whether the substitution had the right domain and range,
was one to one, etc., but you don’t need to. When computing an indefinite integral
you are computing an anti-derivative and the proof of correctness is whether the
derivative is what you started with. You can easily check that the derivative of
sin"™ z/(n + 1) is sin” z cos x. There are a zillion examples of this in Section 5.5.

When evaluating a definite integral you can compute the indefinite integral as above
and then evaluate. A second option is to change variables, including the limit of
integration, and then never change back.

dzx.

2
ExAMPLE: Compute
P /1 x2+1

If we let u = 22 4+ 1 then du = 2x dx, so the integrand becomes (1/2) du/u. If x goes
from 1 to 2 then u goes from 2 to 5, thus the integral becomes

5

1d 1

/ S —(In5—-1n2).
2 2w 2

Of course you can get the same answer in the usual way: the indefinite integral is

(1/2) Inu; we substitute back and get (1/2)In(z* + 1). Now we evaluate at 2 and 1
instead of 5 and 2, but the result is the same: (1/2)(In5 — In 2).

Some useful derivatives

A large part of exact integration is recognizing when something is a derivative of
something familiar. Here is a list of functions whose derivatives you should stare at
long enough to recognize if they come up. (Yes, you can put them on a cheatsheet
when exam time comes.)
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—tanx = sec‘x
dx
d
— secx = secxrtancx
X
d . 1
— arcsin x = —
dx V1—22
d ¢ 1
— arctanx =
dzx 14 22
h 1
—arcsinhr = ——
dx V1+ 22
d 1
—arccoshr = ——
d:C :E2 -1
1
— arctanhx =
T 1 — 22

4.2 Integration by parts

The integral by parts formula

/udv:uv—/vdu

is pretty well explained in Section 8.2 of the textbook. Here I will just mention a
couple of the trickier instances of integration by parts.

Repeated integration by parts

As you will see, when one of the functions involved is e*, and you take dv = e* dzx,
then v du will still have an e* in it. In that case you can integrate by parts again. Will
this ever stop? Well if the original u is a polynomial p(x) then du will be p/(z) dx so it
will have degree one less, and if you repeat enough times you’ll get to stop eventually.
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Similarly, if dv = sinxz dx or cosz dx, then the v term will just cycle through sines
and cosines and if it’s multiplied by a polynomial, the degree will go down each time
you integrate by parts and eventually you’ll get an answer.

You could make an algorithm dealing will all integrals of the form p(z)dz. The book
does exactly this and calls it tabular integration. If you want to learn to integrate
p(z)e®, p(z)sinx and p(x) cos x this way, go ahead. As far as I'm concerned, it is just
as easy to do it out. Well if p has very high degree then probably you’ll want to make
up some kind of shortcut, but I don’t insist that it be the book’s version of tabular
integration. I will give just one example because this is something the book handles
well.

EXAMPLE: Integrate /(:B3 + 3z) cosxdr. Taking u = 2° + 3z and dv = cosx dx
gives

/(m?’—i-?):c) coswdr = (z° + 37) sinx—/(Sa:Q—i—S) sinx dx .

Setting aside the first term on the right-hand side, we work on the second, integreating
by parts again. There will be fewer double negatives if we take the minus sign inside
and attach it to the sinx dz term:

/(3:62 + 3)(—sinx) dr = (32 + 3) cosx — /6$ cosx dz .
One last integration by parts shows that the last integral is
b6xrsinx — /GSinxdw =6zxsinx + 6cosx.

So the whole thing comes out to be

(2% + 3x)sinz + (32 + 3) cosz — (6zsinz + 6cos ).

You can do all of this when there is a term like €3* or cos(5z). Technically this is a
substitution plus an integration by parts but when the substitution is just 5x for =,
you can pretty much do it in your head. For example to integrate [ ze™* dx you can
let dv = €5 dx and therefore v = (1/5)e®®. The substitution is hidden in the correct
evaluation of v from dv.
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Back where you started but with a sign change

If you try to integrate e”sinz, you'll find you have a choice. You can make u = e*
and dv = sinz dx or u = sinz and dv = e” dx. Either way, if you do it twice, you're
get back to where you started but with the opposite sign. That’s good because you
have something like

/ e” sin x dr = otherstuff — / e*sinzdz .

Now you can move the last term to the right over to the left so it becomes twice the
integral you want, and see that the integral you want is half of the other stuff on the
right. Example 4 on page 464 of the textbook is a very clear description of this.

Last trick: you can always try dv = dz

When trying to integrate [ f(z)dz it doesn’t look like there’s a u and a v but if you
know the derivative of f you can always let ©u = f and dv = dx and get

/f(x)dx::ﬁf(a:)—/xf’(w)dx.

Whether this helps depends on whether the factor of z combines nicely with the f’.
The easiest example that works out nicely is f In x dx which is Example 2 on page 463
of the textbook.
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5 Integrals to infinity

Philosophy?

The only way we can talk about infinity is through limits.

EXAMPLE: we try to make sense of 0co/0o or 0o -0 but there is no one rule for what
this should be. When it comes up as a limit, such as lim,_,., 2%/e® then at least it
is well defined. To evaluate the limit we need to use L’Hopital’s rule or some other
means.

EXAMPLE: we try to make sense of Y>> | a,. There is no already assigned meaning
for summing infinitely many things. We defined this as a limit, which in each case
needs to be evaluated: .

li )

fmm ) ax

It is the same when one tries to integrate over the whole real line. We define this as
integrating over a bigger and bigger piece and taking the limit. In fact the definition
is even pickier than that. We only let one of the limits of integration go to zero at a
time. We define [° f(x) dz to be limy/_o fOM f(x)dz. In general, for any lower limit

b, we can define fboo f(z)dx to be limp;_00 fbM f(z)dx. But if we want both limits
to be infinite then we define the two parts separately. The value of [*°_ f(z)dz is
defined to equal

M b
]Vlfgnoo/b f(x)da:+Mli>r£1w/Mf(x)dx.

If either of these limits does not exist then the whole integral is defined not to exist.
At this point you should be bothered by three questions.

1. What is b7 Does it matter? How do you pick it?
2. If we get —oo 4 00, shouldn’t that possibly be something other than “undefined”?

3. Why do we have to split it up in the first place?

3You can skip this section if you care about computing but not about meaning.
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The answer to the first question is, pick b to be anything, you’ll always get the same
answer. That’s because if I change b from, say, 3 to 4, then the first of the two
integrals loses a piece: f34 f(z)dz. But the second integral gains this same piece, so
the sum is unchanged. This is true even if one or both pieces is infinite. Adding or
subtracting the finite quantity f34 f(z) dx won’t change that.

The answer to the second question is that this is really our choice. If we allow
infinities to cancel, we have to come up with some very careful rules. If you would
like to study this sort of thing, consider being a Math major and taking the Masters
level sequence Math 508-509. For the rest of us, we’ll avoid it. This will help to
avoid the so-called re-arrangement paradoxes, where the same quantity sums to two
different values depending on how you sum it.

The last question is also a matter of definition. Consider the sign function

1 x>0
flz) =sign(z)=¢ 0 2=0
-1 <0

On one hand, f_MM f(z)dx is always zero, because the postive and negative parts

exactly cancel. On the other hand, fboo f(x)dr and f_boo f(z) dz are always undefined.
Do we want the answer for the whole integral ffooo f(z)dz to be undefined or zero?
There is no intrinsically correct choice here but it is a lot safer to have it undefined.
If it has a value, one could make a case for values other than zero by centering the

integral somewhere else, for example f;fff () dx is always equal to 14.

5.1 Type I Improper integrals and convergence

The central question of this section is: how do we tell whether a limit such as
[,° f(x) dz exists, and if so, what the value is?

Case 1: you know how to compute the definite integral

Suppose fbM f(z)dz is something for which you know how to compute an explicit
formula. The formula will have M in it. You have to evaluate the limit as M — oc.
How do you do that? There is no one way, but that’s why we studied limits before.
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Apply what you know. What about b, do you have to take a limit in b as well? I
hope you already knew the answer to that. In this definition, b is any fixed number.
You don’t take a limit.

Here are some cases you should remember.

Type of integral Condition for convergence

/ eF dx
b
/ 2P dx
b

/ (Inz) i
b xr

You will work out these cases in class: write each as a limit, evaluate the limit, state
whether it converges, which will depend on the value of the parameter, k,p or q. Go
ahead and pencili them in once you’'ve done this. The second of these especially, is
worth remembering because it is not obvious until you do the computation where the
break should be between convergence and not.

Case 2: you don’t know how to compute the integral

In this case you can’t even get to the point of having a difficult limit to evaluate.
So probably you can’t evaluate the improper integral. But you can and should still
try to answer whether the integral has a finite value versus being undefined. This is
where the comparison tests come in. You buildup a library of cases where you do
know the answer (Case 1) and then for the rest of functions, you try to compare them
to functions in your library.

Sometimes a comparison is informative, sometimes it isn’t. Suppose that f and g are
positive functions and f(x) < g(z). Consider several pieces of information you might
have about these functions.

(a) [, f(x)dx converges to a finite value L.
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(b) [,° f(x) dx does not converge.
(¢) J,© g(x)dx converges to a finite value L.

(d) [, g(z)dx does not converge.

In which cases can you conclude something about the other function? We are doing
this in class. Once you have the answer, either by working it out yourself or from the
class discussion, please pencil it in here so you’ll have it for later reference. This is
essentially the direct comparison test at the bottom of page 510 of the textbook.

Even better comparison tests

Here are two key ideas that help your comparison tests work more of the time, based
on the fact that the question “convergence or not?” is not sensitive to certain things.

(1) It doesn’t matter if f(z) < g(x) for every single = as long as the inequality is true
from some point onward. For example, if f(z) < g(x) once x > 100, then you can
apply the comparison test to compare [ f(x)dz to [, g(z) dz as long as b > 100.
But even if not, once you compare [, f(x)dx to [, g(x)dz, then adding the finite

quantity j})wo f(z)dxor | blOO g(s) dz will not change whether either of these converges.
(2) Multiplying by a constant does not change whether an integral converges. That’s
M M
because if lim f(z) dx converges to the finite constant L then lim / Kf(x)dx
M—o0 M—o0 b

converges to the finite constant K L.

Putting these two ideas together leads to the conclusion that if f(z) < Kg(x) from
some point onward and [, g(x) da converges, then so does [, f(z) dz. The theorem
we just proved is:

If f and g are positive functions on some interval (b,00) and if there are
some constants M and K such that

f(z) < Kg(x) for allx > K

then convergence of the integral fboog(x) dx implies convergence of the
integral [, f(z)dx.
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We used to teach this as the main theorem in this section but students said it was too
hard because of the phrase “there exist constants £ and M.” What are K and M,
they would ask, and how do we find them? You can ask about this if you want, but
don’t worry, it’s not required. Instead, just remember, if f is less than any multiple
of g from some point on, you can use the comparison test, same as if f < g.

1

EXAMPLE: f(z) = 3 3 Actually f(z) ~ 3e™* but all we need to know is that
er —

f(z) < 4e ™ once z is large enough (in this case large enough so that 3e® > 20). We

know that f * e~® dx converges, hence f > f(x) dz converges as well.

5.2 Probability densities

This section is well covered in the book. It is also long: eleven pages. However, it is
not overly dense. I will expect you to get most of what you need out of the textbook
and just summarize the highlights. I will cover the philosophy in lecture (questions
like, “What is probability really?”) and stick to the mathematical points here.

A nonnegative continuous function f on a (possibly infinite) interval is a probability
density function if its integral is 1. If we make a probability model in which some
quantity X behaves randomly with this probability density, it means we believe the
probability of finding X in any smaller interval [a,b] will equal fab f(z)dz. Often
the model tells us the form of the function f but not the multiplicative constant.
If we know that f(z) should be of the form Cz~3 on [1,00) then we would need to
find the right constant C' to make this a probability density, meaning that it makes
[ Cx~3 dx equal to 1.

Several quantities associated with a probability distribution are defined in the book:
mean (page 520), variance (page 522), standard deviation (page 522) and median
(page 521). Please know these definitions! I will talk in class about their interpreta-
tions (that’s philosphy again).

There are a zillion different functions commonly used for probability densities. Three
of the most common are named in the Chapter: the exponential (page 521), the
uniform (page 523) and the normal (page 524). It is good to know how each of these
behaves and in what circumstances each would arise as a model in an application.
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The exponential distribution

The exponential distribution has a parameter ;1 which can be any positive real num-
ber. Its density is (1/u)e~*/* on the positive half-line [0, 00). This is obviously the
same as the density Ce™“® (just take C'= 1/u) but we use the parameter ; rather
than C' because a quick computation shows that the mean of the distribution is equal
to p: integrate by parts with u =  and dv = p~ e */* to get

/ Leolndy = —xe’w}go +/ e Mdr =0+ (—,ue”“"/“)‘zo = L.
o M 0

Note that when we evaluate these quantities at the endpoints zero and infinity we are
really taking a limit for the infinite endpoint.

The exponential distribution has a very important “memoryless” propoerty. If X has
an exponential density with any parameter and is interpreted as a waiting time, then
once you know it didn’t happen by a certain time ¢, the amount of further time it
will take to happen has the same distribution as X had originally. It doesn’t get any
more or any less likely to happen in the the interval [¢, ¢+ 1] than it was originally to
happen in the interval [0, 1].

The median of the exponential distribution with mean g is also easy to compute.
Solving fOM p e /M dy = 1/2 gives M = pu-In2. When X is a random waiting time,
the interpretation is that it is equally likely to occur before In2 times its mean as
after. So the median is significantly less than the mean.

Any of you who have studied radioactive decay know that each atom acts randomly
and independently of the others, decaying at a random time with an exponential
distribution. The fraction remaining after time ¢ is the same as the probability that
each individual remains undecayed at time ¢, namely e */#, so another interpretation
for the median is the half-life: the time at which only half the original substance
remains.

The uniform distribution

The uniform distribution on the interval [a, b] is the probability density whose density
is a constant on this interval: the constant will be 1/(b — a). This is often thought of
the least informative distribution if you know that the the quantity must be between
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the values @ and b. The mean and median are both (a + b)/2. Example 11 on
page 523 of the book discusses why the angle of a spinner should be modeled by a
uniform random variable.

The normal distribution

The normal density with mean p and standard deviation o is the density
1

e (@—p)?/(20%)
o\ 21

The standard normal is the one with = 0 and ¢ = 1. There is a very cool
mathematical reason for this formula, which we will not go into. When a random
variable is the result of summing a bunch of smaller random variables all acting
independently, the result is usually well approximated by a normal. It is possible
(though very tricky) to show that the definite integral of this density over the whole
real line is in fact 1 (in other words, that we have the right constant to make it a
probability density).

Annoyingly, there is no nice antiderivative, so no way in general of computing the
probability of finding a normal between specified values a and b. Because the normal is
so important in statistical applications, they made up a notation for the antiderivative
in the case u = 0,0 = 1:

* 1
B(z) = / vt

So now you can say that the probability of finding a standard normal between a and b
is exactly ®(b) — ®(a). In the old, pre-computer days, they published tables of values
of ®. It was reasonably efficient to do this because you can get the antiderivative
F' of any other normal from the one for the standard normal by a linear substition:
F(x) = ®((x — p)/o). Please be sure to read Example 13 on page 525 where this is
explained in considerable detail.

5.3 Type II improper integrals

A type II improper integral occurs if we try to integrate fab f(x) dz but somewhere
on the interval [a, b] the function f becomes discontiuous. You may not have realized
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at the time but the definition of the definite integral required f to be continuous on
the interval over which you integrate. The most common way that f might fail to
be continuous is if it becomes unbounded (e.g., goes to infinity) in which case you
can imagine that the Riemann sums defining the integral could be very unstable (for
example, there is no upper Riemann sum if the function f does not have a finite
maximum).

Here are some examples: 1) integrating p(z)/q(x) on an interval where ¢ has a zero;
2) integrating In(x) on an interval containing zero; 3) integrating tan z on an interval
containing /2.

Again, the way we handle this is to integrate only over intervals where the function is
continuous, then take limits to approach the bad value(s). If the bad value occurs at
the endpoint of the interval of integration, it is obvious how to take a limit. Suppose,
for example, that f is discontinuous at b. Then define

b c
/ f(z)dx := lim / f(z)dx.
a c—=b~ J,
Note that this is a one-sided limit. We are not interested in letting ¢ be a little bigger
than b, only a little smaller. Similarly, if the discontinuity is at the left endpoint, a,
we define

/abf(x) dr := lim /be(a:)d:c.

c—at

«

Notice in both cases I have used the notation “:=" for “is defined as”, to emphasize

that this is a definition.

If there is a single value c in the interior of the interval, at which f becomes discon-
tinuous, then fj f(z)dz is defined by breaking into two integrals, one from a to ¢
and one from ¢ to b. Each of these has a discontinuity at an endpoint, which we have
already discussed how to handle, and we then add the two results. Again, if either
one is undefined, then the whole thing is undefined.

b

/ Cf@)de = tim [ f@)dot tim [ f@)do.

- +
S—C a S—C s

If there is more than one bad point, then we have to break into more than two
intervals.

We do the same thing for testing convergence of Type II improper integrals as we
did for Type I, namely we find a bunch that we can evaluate exactly and for the rest
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we compare to one of these. Again, the most useful cases turn out to be powers z?,
with p = —1 being the borderline case. One then has to learn the art of comparing
to powers. Specifically, if you know p for which f(z) ~ |x — alP as © — a, or even
that f(z) ~ Clx — a|P as x — a, then you will be able to determine convergence. We
will do some work on this in class but you may also want to check out Examples 4,
5, and 7 on pages 508-511 of the textbook.
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Part 111

Differential equations and Taylor
series
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6 Taylor Polynomials

The textbook covers Taylor polynomials as a part of its treatment of infinite series
(Chapter 10). We are spending only a short time on infinite series (the next unit,
Unit 7) and will therefore learn Taylor polynomials with a more direct, hands-on
approach. Accordingly, the readings in the coursepack will be more central, I will be
providing a bit more in terms of lecture, the pre-homework will be relatively short,
with extra length in the regular homework devoted to problems that would normally
be in the pre-homework.

6.1 Taylor polynomials
Idea of a Taylor polynomial

Polynomials are simpler than most other functions. This leads to the idea of approx-
imating a complicated function by a polynomial. Taylor realized that this is possible
provided there is an “easy” point at which you know how to compute the function
and its derivatives. Given a function f(z) and a value a, we will define for each degree
n a polynomial P,(x) which is the “best n'* degree polynomial approximation to f(x)
near r = a.”

It pays to start very simply. A zero-degree polynomial is a constant. What is the
best constant approximation to f(x) near x = a? Clearly, the constant f(a). What is
the best linear approximation? We already know this, and have given it the notation
L(z). It is the tangent line to the graph of f(x) at x = a and its equation is
L(z) = f(a) + f'(a)(x — a). So now we know that

B(z) = f(a)
Pi(z) = fla)+ f(a)(z - a)

The figure on the next page shows the graph of a function f along with its zeroth
and first degree Taylor polynomials at x = 2. The zeroth degree polynomial is the
flat line and the first degree Taylor polynomial is the tangent line.
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b
1

Just one more idea is needed to bust this wide open, that is to figure out P, (x) for all
n: the polynomial P,(x) matches all the derivatives of f at a up to the n'* derivative.
Check: Py matches the zeroth derivative, that is the function value, and P, matches
the first derivative because both P; and f have the same first derivative at a, namely
f'(a). The next figure shows Pj, Py and Ps at x = 2 for the same function, with Ps
shown in long dashes, P, in shorter dashes and P3 in dots. As n grows, notice how
P, beceoms a better approximation and stays close to f for longer.

10 -

b
L
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Taylor’s formula

Using what we just said you can solve for what quadratic term is needed to match the
second derivative. We used to make students go through this derivation but it took
a lot of time and the students did not seem to feel it increased their understanding.
Therefore, we will jump straight to the formula.

The definition uses some possibly unfamiliar notation: f*) refers to the k** derivative
of the function f. This is better than f’, f”, etc., because we can use it in a formula
as k varies. f(© denotes f itself.

Definition of Taylor polynomial: Let a be any real number and let
f be a function that can be differentiated at least n times at the point
a. The Taylor polynomial for f of order n about the point a is the
polynomial P, (x) defined by

k) (g
P,(x) ::Zf k;'( )(x—a)k.

k=0

Remember to read this sort of thing slowly. Here is roughly the thought process you
should go through when seeing this for the first time.

e [t looks as if P, is a polynomial in the variable x with n 4 1 terms.

e When a = 0 it’s a little simpler:

k=

o

The coefficients are the derivatives of f at zero divided by successive factorials.
e Hey, what’s zero factorial? Oh, it’s defined to be 1. Who knew?

e The degree of P,(z) will be n unless the coefficient on the highest power (z —a)”
is zero, in which case the degree will be less.
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Next you should try a simple example.

EXAMPLE: f(z) = 2, n = 3 and a = 2. The value of f(a) is 2 and the first three
derivatives of f(z) are constants: 1, 0, 0. Therefore

Pg,(x)=2+1.(q;—2)+%(x—2)2+%(x—2)3.

In other words, P3(z) = z. Obviously P, Ps and so on will also be z. Maybe
this example was too trivial. But it does point out a fact: if f is a polynomial of

degree d then the terms of the Taylor polynomial beyond degree d vanish because the
derivatives of f vanish. In fact, P,(x) = f(x) for all n > d.

EXAMPLE: f(z) =¢€", n=3and a = 0. We list the function and its derivatives out
to the third one.

k)
k @ W@ Dy
0 e’ 1 1
1 e’ 1 x
2
9 e 1 r
2
3
i
3 @ 1 T
€ 6

Summing the last column we find that P3(z) = 1+ z + 2?/2 + 2°/6.

EXAMPLE: Let f(z) = In+/z and expand around a = 1. We'll do the first two terms
this time.

; T N LC IO B A TR
0 In\/z 0 0

1 1 1

—1 1 1
2 o 3 —yr =1

-1 —1)2
Summing the last column we find that Py(z) = ° 5 (= 1 ) :
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6.2 Computing Taylor polynomials

You can always compute a Taylor polynomial using the formula. But sometimes
the derivatives get messy and you can save time and mistakes by building up from
pieces. Taylor polynomials follow the usual rules for addition, multiplication and
composition. If f and g have Taylor polynonmials P and () of order n then f + g has
Taylor polynomial P + (). This is easy to see because the derivative is just the sum
of the derivatives. Furthermore, the order n Taylor polynomial for fg is P- @ (ignore
terms of order higher than n). This is because the product rule for the derivative of
fg looks exactly like the rule for multiplying polynomials. I won’t present a proof
here but you can feel free to use this fact.

ExamMpPLE: What is the cubic Taylor polynomial for e”sinz? The respective cubic
Taylor polynomials are 1 + 2 + 22/2 + 23/6 and x — 23/6. Multiplying these and
ignoring terms with a power beyond 3 we get

x? a3 x3
You can do the same thing with division, assuming you learned polynomial long
division (this is useful? Who knew!).

Perhaps the most useful manipulation is composition. I will illustrate this by example.
The Taylor polynomial for e is obtained by plugging in z? for x in the Taylor
polynomial or series for e* : 1+ (22) + (2%)?/2! + - -.

One last trick arises when computing the Taylor series for a function defined as an
integral. Suppose f(z) = [, g(t)dt. Then f'(z) = g(z) so if you know g and its
derivatives, you know the derivatives of f. If g has no nice indefinite integral, then
you don’t know the value of f itself, except at one point, namely f(b) = 0. Therefore,
a Taylor series at b is the most common choice for a function defined as fbx of another
function.

EXAMPLE: Suppose f(z) = [ v/1+ t3dt. The Taylor series can be computed about
the point a = 1. From f/(z) = /1 + a3, f"(x) = 322/(2V/1 + 23) we get

=0, f1)=v2 ["(1)=3/(2v2)

3
d therefore Py(x) = V2(x — 1) + —=(x — 1)*.
and therefore Ps(x) (x—1) 4\/§(x )
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Using Taylor polynomials to approximate

In the subsequent sections and in my lectures you will see where Taylor polynomials
come from, why they are good approximations to the functions that generate them.
You will also see precise statements about how close they are. For now though, we will
take this on faith and see how to use them. In case this bothers you I will point out
two quick things. (1) The Taylor polynomial of degree 0 is the constant f(a). Surely
this is a reasonable, if trivial, approximation to the function f(x) when z is near a.
(2) The Taylor polynomial of degree 1 is the linearization f(a)+ f'(a)-(z —a). Again,
you should already believe that this is a good approximation to f(x) near x = a, in
fact it is the best possible approximation by a linear function.

Example: What’s a good approximation to ¢’%? A Taylor polynomial at a = 0 will
provide a very accurate estimate with only a few terms. The linear approximation
1.06 is already not bad. The quadratic approximation is

14 0.06 + (1/2)(0.06)* = 1 + 0.06 + 0.0018 = 1.0618..

The true value is 1.0618365... so the quadratic approximation is quite good!

Taylor series are particularly useful in approximating integrals when you can’t do
the integral. Remember the problem of approximating fol/ 2 cos(rz?) dx? It was not
se easy to get a good answer with a trapezoidal appoximation. We can do better
approximatng cos by a Taylor polynomial around a = 0. You can directly compute
that the first three derivatives are zero, or you can compute P, in one easy step like
this: for the function cosz, Po(z) = 1 —2%/2; now plug in wz? for = to get 1 —mw2z*/2.
This is P;. The nice thing about polynomials is that you can always integrate them.

In this case,
1/2 .
Py(x) = (x - —= >
| ),

This comes out to 1/2 — 7%/320 ~ 0.46916 which is accurate to within 0.001.

1/2
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6.3 Taylor’s theorem with remainder

The central question for today is, how good an approximation to f is P,7 We will
give a rough answer and then a more precise one.

Rough answer: P,(z) — f(z) ~ c¢(x — a)"™ near x = a. For example, the linear

approximation P is off from the actual value by a quadratic quantity c(x —a)?. If z
differs from a by about 0.1 then P;(x) will differ from f(z) by something like 0.01. If
x agrees with a to four decimal places, then P;(z) should agree with f(x) to about
eight places. Similarly, the quadratic approximation P, differs from f by a multiple
of (z — a)?, and so on.

You can skip the justification of this answer, but I thought I'd include the derivation
for those who want it because it’s just an application of L’Hoépital’s rule. Once you
guess that P,(x) — f(z) ~ c¢(z — a)", you can verify it by starting with the equation

i £0) = Pa)
=0 (x —a)*t! ’

and repeatedly applying L’Hopital’s rule until the denominator is not zero at x = a.
Because the derivatives of f and P, at zero match through order n, it takes at least
n + 1 derivatives to get something nonzero, at which point the denominator has
become the nonzero constant (n+1)!. The limit is therefore f™*Y(a)/(n+1)!, which
may or may not be zero but is surely finite.

We know the Taylor polynomial is an order (x — a)"*! approximation but there is
a constant ¢ in the expression which could be huge. What about actual bounds can
we obtain on f(z) — P, (x)? These are given by Answer # 2, which is called Taylor’s
Theorem with Remainder.

Taylor’s Theorem with Remainder: Let f be a function with n + 1
continuous derivatives on and interval [a,z] or [z,a] and let P, be the
order n Taylor polynomial for f about the point a. Then

(1) (y
fa) = Pata) = T8

T — a)n+1

for some u between a and z.
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The theorem is telling us that the constant ¢ in the rough answer is equal to
fO+D(u)/(n+ 1)! for this unknown u. This is at first a little mysterious and difficult
to use, which is why we’ll be doing some practice. The exact value of u will depend
on a,z,n and f and will not be known. However, it will always be between a and
x. This means we can often get bounds. We might know, for example, that f™*1) is
always positive on [a, z] and is greatest at a, which would lead to

f(nH)(a) n+1
_ 1 1
EXAMPLE: Let f(z) = e ®,a =1n10 and n = 1. How well does P,(x) = 1——1—0(35—

In 10) approximate e~ for x = In10 + 0.2 ~ 2.502?7 The remainder R = e* — P,(x)

will equal f”(u)/2! times (0.2)? for some u between In10 and In10 + 2. Because

f"(u) = e, we know that 0 < f”(u) < f”(a) = 1/10. Therefore, with 2 = In 104-0.2,
1 02 1 02 1

- = —x ey = 2
0 10 ¢ <10 10 T2

Numerically, 0.08 < e~(710+0-2) < (0.082. The actual value is 0.081873. . ..

Here is another example.

2 2t

EXAMPLE: Let f(z) = cos(z), a =0 and n =4. Then Py(z) =1 — ) + BYR This is

also P5 because £ (0) = 0. How close is this to the correct value of cos x at x = 7/4?
Because the sixth derivative of cos is — cos, Taylor’s theorem says

cos(m/4) — Py(m/4) = c(n/4)°

where ¢ = — cosu/6! for some u € [0,7/4]. The maximum value of — cos on [0, 7/4]
is —y/1/2 and the minimum value is —1, therefore

1 /m\6 1 6

— (Y < 4) — Py(n/4) < — (—)
0 (7)< costm/t) = Pulm/) < 72012 \4

For bounds one can compute mentally, we can use the fact that 7/4 is a little less

than 1 to get
1
—ﬁo S COS<7T/4) — P4<7T/4) S 0
to see that Py(m/4) overestimates cos(m/4) but not by more than 1/720 which is a

little over 0.001.
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7 Infinite series

This topic is addressed in Chapter 10 of the textbook, which has ten sections and
gets about four weeks in Math 104. That’s because it is an important foundation for
differential equations, Bessel functions, and Fourier analysis. In Math 110, however,
we need this topic for only two reasons, which can be covered in one week. (1) There
are some useful infinite sums. In Unit 3 you already saw the most important example
of this, the infinite geometric series, which is used for modeling the total lifetime
value of an asset or debt. (2) Understanding the Taylor series will help to make sense
of the material you just learned concerning Taylor polynomials. For example, is e*
really equal to the infinite sum 1+ z + 22/20 +23/3! + ... 7

7.1 Convergence of series: integral test and alternating series

As mentioned before, we are not going to cover the more than a dozen variants of
theorems about when infinite series converge. You can get by with just a few methods:
comparing to an integral, comparing to a geometric series, and using sign alternation.
FYI, the definition of convergence was stated at the end of Section 3.1.

The integral test

Here’s an example: Does Y 02 | n~2 converge? It’s hard to tell from summing the first
few terms 14 1/4+1/9 + ---. This sum should be very similar to [ z~%dz. Does
this improper integral converge? Yes. How can we be sure the sum behaves like the
integral? We have to somehow compare the sum and the integral. This will be your
first in-class problem.

We can generalize this into a theorem, which may be found in Section 10.3 of the
textbook on page 594. We will discuss the nuances of the theorem in class.

Integral test: Let {a,} be a sequence of positive terms. Suppose that
a, = f(n) where f is a continuous, positive, decreasing function of z
for all z > N (N a positive integer). Then the series >~ \ a, and the
integral [\ f(z) dx either both converge or both diverge.
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Alternating series

If the terms {a,} alternate in sign and decrease in magnitude with a limit of zero
then 7  a, must converge. This is more intuitive than it looks. For example, the

series
>
n=1 \/ﬁ
fails to converge (integral test) but its alternating version

< (=1
>

n=1

n

converges. To see why, let’s write out the series in long form so it is not obscured by
notation.

1

[ SRS S N
ViTV5 Ve

V2B

In decimal approximations, that’s

1-0.71+0.58—-0.50+045—-041+---.

Do you see why the partial sums converge? The partial sums are 1,0.29,0.87,0.37,0.82,0.41, . . ..

These alternate down, up, down up,... but notice that after each up the partial sum
is not as it was before, and after each down is it not as low as it was before. That
means that

Each partial sum ending in a positive term is an upper bound for the
infinite sum;

Each partial sum ending in a negative term is a lower bound for the
infinite sum.

This it useful: bounds for alternating series are easy! But also it should make it clear
why the theorem is true: you have a bunch of upper and lower bounds getting closer
to each other, so the squeeze the series to a limit.
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7.2 Convergence of series: ratio and root tests

Let’s start with a triviality: if the terms of a series do not go to zero then the series
can’t possibly converge. Believe it or not, this gets its own theorem, test and example
on pages H88-589 in Section 10.2 of the textbook. If the terms do go to zero, then
the series still may not converge if the terms get small too slowly. For example,
> 2, 1/4/n does not converge (use the integral test). One case where we know the
terms get small fast enough is when they decrease like a geometric series. If r < 1
and a, < Kr" for any constant K, then » *_, a, will converge. (Again, note, for
convergence issues, mutliplying by a constant doesn’t affect anything.)

It’s not always easy to test whether a,, < Kr™ and it’s not necessary either. If {/a,
has a limit, » < 1, then a, is enough like ™ to guarantee convergence. The following
statement of this is simplified somewhat from the form in Section 10.5, page 608.

oo
Root test: Suppose lim {/|a,| =7 < 1. Then Zan converges.
n—oo

n=1

If you're having trouble computing the limit of |a,|"/™

test.

you can always try the ratio

Ap41

=7 < 1. Then |a,|"/" — 7 and hence
Qn

Ratio test: Suppose lim
n—oo

the series converges.

In both cases, if » > 1 then the terms get big, hence the series can’t possibly converge,
but if » = 1 you don’t know anything. Let’s try these tests on some series.

o0
n
EXAMPLE: Does Z on converge?

n=1
RooT TEST:
I < n )1/71 lim,,_yo0 /"
m ([ — = —
- 1
= 3
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Because 1/2 < 1 we conclude that this series converges.

RATIO TEST: This is a little easier because it does not require evaluating lim,,_, n'/™.

An+1 7”""1

1
an, n 2

> n
which has the obvious limit % Again we conclude that Z o CODVerges.

n=1

o0 n

EXAMPLE: Does Z - converge?
n!

n=1
RATIO TEST: Let a, = 5"/n!. Then an1/a, = 5/(n+1). Clearly lim,, o 5/(n+1) =
0, so the ratio test tells us that this series goes to zero plenty fast for convergence to
occur: all that was needed was a limit less than 1, and we managed to get 0.
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7.3 Power series

One very important class of infinite series are the power series which are series that

o

n

has a variable x occurring in a very specific way: it has the form Zanx . If you

n=1
plug in a real number for x then you get a series that you can try to sum. As it is, it

is a function of z, except that for some values of x it may be undefined.

Let me say that again: THIS SERIES IS A FUNCTION OF x. Think this over till
it makes sense.

If you can evaluate lim,,_, |a,+1/a,| and it is equal to a real number 7, then
limy,—oo | 12"/ (ana™)| will equal 7 - |z|. So you'll get convergence if |rz| < 1 and
not when |rz| > 1. When |rz| = 1, you won’t know without further examination.
Similarly if you can evaluate lim,, o, |a,|"/™ and you get r, again lim,, . |a,z"|*/™ will
be r|x|. Again the series will converge when |z| < 1/r and diverge when |z| > 1/r.

So that’s really all you need to know about power series. Here are some examples.

[ee] 2 n
ExaMPLE: For which z does the series Z (§> x" converge? The coefficient (2/3)"

n=1
is an easy candidate for either the ratio or the root test, resulting in a limt of r = 2/3.

Therefore the sum converges when (2/3)|x| < 1, that is, |z| < 3/2 and diverges when
(2/3)]z| > 1, that is, > 3/2. What about when |z| = 3/27 We get no information
from the ratio or root tests. The series, for z = 3/2, is >~ 1, while the series for
r=-3/21s Y 2, (=1)". In neither case does the term go to zero, so in neither case
does the series converge.

x© n
x
EXAMPLE: For which z does the series E =~ converge? Taking a, = 1/n!, we see
n!
n=1
that any1/a, — 0, so the limiting ratio (and therefore root) is 0. This means we get

convergence if 0 - |x| < 1, in other words, for all real z. Another way of saying this is
that factorials grow way faster than any power, or equivalently z™ = o(n!) for any =z,
which means the terms of the series go to zero quite rapidly.

[ee]

:L,n
EXAMPLE: For which z does the series E (—1)""'=— converge? Because |a,| = 1/n,
n
n=1
both ratio and root test result in a limit of r = 1. For example, a,11/a, =n/(n+1)
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which clearly converges to 1. Therefore the series converges for |z| < 1 and diverges
for |z| > 1. When x = 1 we get the famous harmonic series 1+1/2+1/34+1/4+---.
This is one you should commit to memory if you haven’t already: by the integral test,
because [~ (1/x)dx diverges, so does the harmonic series. When z = —1 we get the
alternating harmonic series 1 — 1/2 4+ 1/3 = 1/4 + ---. This converges by the
alternating series test, so we see that the power series  >° | z"/n converges exactly
when z € [—1,1).

Taylor series

The Taylor series is just the Taylor polynomial with n = oco.

Definition of Taylor series: Let a be any real number and let f be a function
that is smooth at the point a, meaning it can be differentiated infinitely often. The
Taylor series for f about the point a is the series

4k (g .
,;fkf )(x—a) .

For any particular value of x this series may or may not converge. The Taylor series
with a = 0 is called the MacLaurin series:

*_FI(0)
Zf (0)

k=0

ExXAMPLE: What it the Taylor series for the function f(x) = 1/(1 —2z) at x = 0
and for which values of x does it converge? The easiest way to compute this is by
composition. Remember computing the Taylor polynomials for 1/(1 — ) and getting
P.(z) = 1+x+2%+- - -+2"? Evidently the Taylor series for 1/(1—z) is 1+z+2%+---.
Substituting 2z for x we find that the Taylor series for 1/(1 — 2z) is

1+ (22) + (22)° 4+ (20)° + -+ = 1+20+42> +82%+- -+

This converges when |2x| < 1, thus |z| < 1/2. If you graph it, you will see why the
series might have problems converging beyond that.
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8 Introduction to differential equations

8.1 Modeling with differential equations

A differential equation is an equation, involving derivatives, in which the quantity
that you must solve for in order to make the equation true is an unknown func-
tion. A classical example is Malthusian population growth. This simple population
growth model (due to Malthus) postulates that the (instantaneous) rate of growth of
a population is proportional to its present size. If we let A(t) denote the size of the
population at time ¢, then the equation representing this is

dA
0 kA(t). (8.1)
Here k is a constant of proportionality. It is important that you understand its
units! To make the equation work out, £ must have units of inverse time. The value
k = 0.03years™! for example, would mean that if you measure time in years, and
the present population is one million, then the instantaneous growth rate would be
30,000 people per year.

The solution to a differential equation such as (8.1) is any function A(¢) that makes
the equation true. Typically there will be more than one such equation. For example,
the general solution to A’(t) = 0.03A(t) is Ce®% where C' is any real number. We
are going to postpone until Unit 9 the business of to find nice solutions such as this
one. In Unit 8 we will concentrate instead on understanding pretty much everything
else: how to set up a differential equation, what it means, and what the solution will
look like qualitatively.

Verifying that you have found a solution is a lot easier than finding a solution. To
check that Ce¥? solves (8.1), just evaluate both sides when A(t) = Ce**. The left side
is the derivative of A(t) which is Cke*t. The right side is k times A(¢) which is Ckek?.
They match — whoopee!

The reason you might expect there to be many solutions to an equation such as (8.1)
is that it is an equation of evolution. Once you know where you start, everything
else should be deterimined, but there is nothing in the equation that tells you where
you start. A differential equation together with a value at a certain time is called
an initial value problem. For example, A'(t) = 0.03t; A(0) = 1,000,000 is an initial
value problem.
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Standard form for first-order differential equations

A differential equation could be abitrarily complicated. The equation

2

df

flz) {1+ (%)2 —In f(z 4+ a) + exp ( f) = arctan(z + f(z))

da?

is a differential equation but way too complicated for us to have any hope of figuring
out what functions f satisfy it. Note the appearance of a second derivative, the square
of the first derivative, a big messy cube root and the appearance of the unknown
function f as the argument of the arctangent. We will stick to a much simpler class
of differential equations, called first order differential equations in standard
form. This is the form

dy

de
Be sure you understand what this means. The unknown function in this case is the
function y(z). We call y the “dependent variable” and x the “independent variable”.
The function F'is an abstraction representing that the right-hand side is some function
of z and y. Here are some examples:

F(z,y). (82)

dy -2
de .

dy

AN

dz 4

dy

- = I —
dx y

d .
d—izw

Even though you don’t yet know much about differential equations, there is a lot you
can say looking at these examples. (i) It is possible that F'(x,y) will be a function
of just x, as in the first equation. This means that y(x) is just the integral of this
function. So you can already solve this one: it is y(z) = —1/2 4+ C. (i7) It is possible
that F'(x,y) will be a function of just y, as is the case in the second equation. In that
case it’s not so obvious how to solve it, but you actually already know the solution to
this particular equation because it is just (8.1). (ii7) In general, a first order equation
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in standard form can be simple, like the third one, or complicated, like the fourth. The
simple ones are usually exactly solvable (the third one will be solved in Unit 9.3) and
the more complicated ones are not. The fourth equation, while not exactly solvable
will still yield plenty of information; this is what Unit 8 is mostly about.

A point of notation: should we use y' or dy/dx? Both mean the same thing, but
dy/dx is clearer because it tells you which is the dependent variable. If you wrote
Yy = —ce' it would be unclear whether ¢ or x was the independent variable (or ¢
could be too, but we never choose ¢ for a variable name because it sounds too much
like it should be a constant). We will use both notations, as both are common in
real life. One more point: when we want to emphasize that the unknown fariable is
a function, we sometimes use a name like f or g instead of y. For example, f' = —xf
is a differential equation (it is understood that the indpendent variable is x). The
most common independent variable names are x and ¢, with ¢ usually chosen when it
represents time.

Integral equations

Certain equations with integrals in them can be made into differential equations
by differentiating both sides (this uses the Fundamental Theorem of Caculus). For
example the integral equation

t
f(t) =12 —/ 3f(s)ds
5
can be differentiated with respect to t to obtain

F(6) = =3£(0).

The integral equation has only one solution but this differential equation has many.
This means that there was initial value data in the integral equation that we forgot
to include in the differential equation. Can you spot it? Really we should have
translated the integral equation into the initial value problem:

i) ==3f(t) ; f(5)=12.
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8.2 Slope fields

Slope field drawings are a way to enable you to sketch solutions to differential equa-
tions. The equation dy/dx = f(x,y) tells you what the slope of the graph of y should
be at any point (z,y), if indeed that point is on the graph. We make a grid of points
and through every (z,y) in the grid we put a little line segment of slope f(x,y). We
then try to sketch solutions that are always tangent to the line segments, following
them as they change direction. Pages 538-539 of the text do a good job explaining
this. PLEASE READ THESE! We will then spend a day practicing.

Slope fields are a qualitative approach to understanding the solution to a differential
equation, meaning that you get information about the nature of the solution even
when you can’t find the exact solutions. Here’s an example.

Why can we tell that the solution to ' = 2 — e¥ should approach a limit of In2? It’s
because when y(z) < In2 then 2 — e¥ is positive and the function threrefore increases
while when y(z) > In2 then 2 — e? is negative and the function therefore decreases.
It seems clear from this that if the function begins below In 2 it will steadily increase
but at a lesser and lesser rate and never get above In 2, while if the function begins
above In 2 then it will steadily decrease but at a lesser and lesser rate and never get
below In 2. We therefore have a very good idea what this function looks like without
ever solving the equation:

0.6
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8.3 Euler iteration

Euler’s method, or “Euler iteration” is a way of finding a numerical approximation
for the solution of an initial value problem at some later time. In other words, for the
equation ' = f(y,t);y(to) = yo, you can compute an approximation to y(t;) when ¢,
is any time greater than .

The idea behind Euler iteration is that you follow the slope field for a small amount
of time At, which is fixed at some value such as 0.5 or 0.1. Let t; = tg + At be the
new time and let y; be the approximation you get by followingthe slope field fo time
At. In other words, y1 = yo + (At)f(yo,t0). The slope at the point (¢1,y;) will in
general be different. Follow that slope for time At, and repeat.

I don’t have a lot to add to what’s in the textbook on Page 539-541. Euler’s method
is important because it gives you an in-principle understanding of what a solution
should be like, whether or not you can produce an analytic solution. This is important
for your understanding even if you rarely use Euler’s method in practice.

Different notions of solution

Our last order of business in this section is some philosophy. You need to understand
what is meant by a solution to a differential equation. The simplest differential
equation is of the form 3y’ = f(z), in other words, the right-hand side does not
depend on y. You already know how to solve this: y(z) = [ f(z)dz. But wait, what
if it’s something you can’t integrate? An example of this would be dy/dx = e, We
could write a solution like y(z) = y(0) + [ et dt, but is this really a solution? The
answer is yes. Here’s why.

Euler’s method allows you to approximate values of the independent variable. For
example, given ¢y = f(z,y) and y(0) = 5 we could use Euler’s method to evaluate
y(2). What you need to understand is that yes we can do it but it’s tedious and not
all that accurate unless you use a miniscule step size. By contrast, using Riemann
sums to estimate f02 e’ dt is a piece of cake. Keep in mind the relative difference in
difficulty between Riemann sums and Euler’s method as we discuss three levels of
possible solution to a differential equation.
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1. If you can find a solution y = f(x) where f has an explicit formula then that is
obviously the best. Your calculator or computer (or maybe even your phone) can
evaluate this, and typically you have other information associated with f such as
how fast it grows, whether it has asymptotes, and so forth.

2. Next best is if you can write a formula for y that involves functions without nice
names, defined as integrals of other functions. You already realize that many simple
looking functions such as e** and In(z)/(1+x) have no simple anti-derivative. The
differential equation y’ = e*” is trivial from a differential equations point of view
(it is in the form v’ = f(x) which we discussed above) but still we can do no better
than to write the solution as y = [ ¢** dz. This is perfectly acceptable and counts
as solving the equation.

3. Lastly, for the majority of equations, we can’t write a solution even if allowed
to use integrals of functions. In this case the best we can do is to numerically
approximate particular values and to give limiting information or orders of growth
for y. For example, if 3/ = 2 — ¥ then lim, o, y(z) = In2.

One last thing that Euler iteration does for us is to convince us that an initial value
problem should have a solution. After all, if you look at an equation with functions
and derivatives, there is no reason to believe that there is a function satisfying the
equation. But Euler iteration shows you that there has to be. Just do Euler itera-
tion and make the steps smaller and smaller; in the limit it will produce a function
satisfying the differential equation. This is the basis for a theorem. The theorem is
not officially part of this course but you might be interested to know what it says.

Theorem: Let f(x,y) be a continuous function. Then the initial value
problem v = f(z,y), y(xo) = yo has a unique solution, at least for a
small amount of time (after that it might become discontinuous). This
solution can be obtained by taking the limit of what you get from Euler
iteration as the step sizes go to zero.
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9 Exact solutions to differential equations

This unit covers Sections 7.2 and 9.1-9.2 of the textbook. It concerns mainly tech-
niques of computation. For each of the three class days I will give a short lecture
on the technique and you will spend the rest of the class period going through it
yourselves.

Exactly solving differential equations is like finding tricky integrals. You have to
recognize the equation as a type for which you know a trick, then apply the trick.
You will learn precisely two tricks. The first works for a class of equations called
separable equations. The trick involves getting all the z variables on one side of
the equation and the y variables on the other (hence the name “separable”). The
second class is the class of linear first order equations. The trick there will be to find
a so-called integrating factor. Before learning either of these tricks, we’ll spend a day
getting familiar with the easiest but single most important differential equation. This
one is bother separable and linear.

9.1 [’ =kf and exponential trajectories

The single most important differential equation is, as luck would have it, very easy
to solve:

dy
L=k 9.1

where £ is a constant. You can solve it by guessing the answer but let’s solve it a way
that will generalize.

Step 1: Separate. To get the dependent variables on the left and the independent
variables on the right, we divide both side by y and multiply both sides by dz:
dy

— =kdz. 9.2
Yy (9.2)

If you are worried about whether it’s OK to multiply dy/dz by dx, you're right to be
concerned, because a dy without a /dx is meaningless, but it works anyway and we’ll
show you why later.

Step 2: Integrate. The integral of dy/y is In |y|. What’s the integral of k. You might
think it’s 1/2k? but it’s not. Pay attention to the variable of integration, which is dx.
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The integral of k dx is just kx. So now (don’t forget the constant) we have

In|y|=kz+C. (9.3)

Step 3: exponentiate both sides to get

|y| — ekx+C — €Cekx. (9'4)

Step 4: The constant e can be any positive real number. If the absolute value of ¥
can be any positive multiple of e** that’s the same as saying y can be any multiple
of e*® positive or negative. Call this multiple C;. We write the solution in its final
form:

y = Cret” (9.5)

where (] can be ay real number.

Note: A lot of people like to call the new constant C; the same name as the old
constant and write y(z) = Ce*® where C is any real number. This is a correct
solution, but we don’t want you changing the value of C' midstream if it leads to
writing incorrect equations such as e“e*® = Cek®.

In an application, the independent variable will be expressed in some natural unit,
often time, and the function variable will have another unti such as money, volume,
total quantity of something, etc. The units of dy/dz are y-units divided by z-units, so
in the equation dy/dx = ky, the units of the constant & must be in units of “reciprocal
z”. For example, if x is in seconds then k is in (sec)™!: the name for this unit is Hertz,
abbreviated Hz. In the solution y = C'e*® notice that the exponent is unitless (as I
have previous claimed must be true of exponents). It is good to be aware of this, as
it is one easy way to doublecheck your work.

The meaning of these equations in applications is that the rate of change is propori-
tional to the present quantity, or to the difference between the present quantity and
some limiting value. Therefore we should think of k as a relative rate of change,
that is a rate expressed as a fraction of the whole. One example is an interest rate.
Interest, even though it produces dollars, is measured in units of inverse time because
the dollars cancel: each dollar begets a similar number of future dollars. The number
of dollars produced in a year by a single dollar is equal to the number of pennies
produced in a year by a single penny or the number of gigabucks produced in a year
by a single gigabuck.
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Applications

We will look at a number of applications. There is a fundamental difference in the
behavior depending on whether k is positive or negative. When k is positive, e*®
grows (in fact very rapidly). When k is negative, e shrinks.

One quantity that tends to grow exponentially is wealth. Wealth can be negative if
it’s a debt, but both debts and assets tend to grow rather than shrink. Another is
population. A characteristic of applications in which f’ = kf with k& > 0 is that each
unit of whatever quantity is growing contributes to the growth independently of each
other unit. So for example, if you put two chunks of money in two accounts at the
same interest rate, it’s just like putting in one chunk that’s the sum of the original
two. This is reflected in the fact that the growth rate is a proportion per time, not
an absolute amount per time.

Let’s look at ¢y = —ky more closely. It approaches zero. Very closely related is when a
quantity comes to equilibrium at some value other than zero. For example, suppose an
object at temperature A is placed in a large bath at temperature B. The temperature
of the object approaches the temperature of the bath at a rate proportional to the
difference in tempearatures. Mathematically, if the temperature as a function of time
is denoted by y(t), we have

dy

dt
Let’s see two ways of solving this. One is using the same method as before. We get
the chain of equations:

k(B —y).

d
YW _ ran
B—y
—In|B—y| = kt+C
B—y| = e“M

B-y = +e % =Cle™
y = B — Cle_kt
where (] is any real number.

What is this saying qualitatively? If the dependent variable is approaching a target,
B, at a rate proportional to the distance from the target, then the value at time ¢ will
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be the equilibrium value B plus an offest that decreases exponentially. Many physical
systems behave this way (thermal equilibria, radioactive decay, resistor-capacitor net-
works) but also systems in social science where there is negative feedback (population
approaching a natural limit, price corrections after an economic shock, etc.).

The second way to solve this is to move upward by B: algebraically, replace y by
y — B. We will discuss this in class.

Continuous versus annualized rates

Interest is fundamentally a continuous time phenomenon, especially when the amounts
involved are so large that the interest is substantial even in a minute or a few seconds
(think National Debt). Consumers, however, are barely able to handle simple interest
and haven’t a clue about continous time interest. This has led to regulation where
interest rates must be quoted in Annualized Percentage Yield (APY) as well as a
simple growth rate.

To see how this works, suppose an asset grows at the rate of 6% per year. If A(t) is
value at time ¢, this means that A’(t) = 0.06A(¢) when ¢ is measured in years; the
units of the 0.06 are inverse years. After one year, an amount Ay will grow to Aye’%.
That means the gain was Ay(e%%® —1). Because €*% ~ 1.061837, this means that the
percentage growth of the asset in one year was roughly 6.1837%. In other words:

Continuous interest rate of 6% leads to annualized interest rate of 6.1837%.

We can do this for any rate. Let  be the continuous rate (in the above example 0.06)
and let A be the annualized rate (in the above example 0.061837). Then r and A are
related by the equations:

A=ec"—1; r=In(1+A).

If you write these as percentages, you have to remember to multiply and divide by
100 at the apropriate places:

A=100(e"1° — 1) ; 7=1001n(1+ A/100).

You can also read about this in Hughes-Hallett, page 571.
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9.2 Separable equations

The book teaches this clearly and succinctly in half a page starting at the top of
page 432, with two worked examples immediately following. I probably don’t need
to repeat it for you here, but to summarize very briefly, the steps are:

1. Recognize the equation as having the form

dy  g(x)

dr  h(y)

2. “Cross-multiply” to get

3. Integrate both sides to get the equation
H(y) =G(x)+C
where H is an anti-derivative of A and G is an anti-derivative of g.
4. Solve for y by applying the inverse function to H:
y(z) = H(G(x) + C).

If it bothers you that the equation h(y)dy = g(x)dz is not a real equation because
dy and dz aren’t actual numbers and have meaning only as symbols in integrals such
as f g(x) dx, then you should read the justification in the middle of page 432.

EXAMPLE: 3 = x + xy. You can write this as 4’ = x(1 + y) so it is of the right form
with g(x) = z and h(y) = 1/(1 +y). Please see the discussion in the book about the
form g(x)H (y) being the same as the form g(x)/h(y) with h(y) = 1/H(y) but don’t
be confused: the H in that discussion is NOT the H that’s the anti-derivative of h
(I have no idea why they use H instead of some other letter!). Continuing, we write

dy
14y

=zdx
and integrate both sides leading to
2

mu+m:%+c.
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In other words, H(y) = In(1 + y) and G(x) = 2*/2. The calculus is now done. You
can use algebra to write the equation in a more understandable form. To isolate y,
exponentiate both sides and subtract one. Here is the sequence of equations.

1‘2

In|l+yl = B} +C
1+y| = ce®/? where ¢ = e is any positive constant
1+y = ce”’ /% where ¢ = %€ is any constant
y = —1+ e’ /?

That’s it! Practice it. Learn it. Your brain is built to do procedures like this and you
will probably find that you learn this one with relative ease. The rest of what I have
to say about separable equations concerns some qualitative aspects of their solutions.

9.3 Integrating factors and first order linear equations

The exposition in Section 9.2 is very clear. The only thing I have to add is an
explanation of how to find the right constants to solve an initial value problem in
the case that you can’t xplicitly integrate one of the functions you need to integrate.
Begin with the equation

y + P(z)y = Q)
and suppose that P has no closed form integral. Letting v(z) = exp([ P(z)dz) we
end up (see page 545) with

1
Y= M /v(x)Q(x) dx . (%)

Adding an arbitrary constant ¢ to [ P(X)dz in (*) does not change the answer at
all: it multiplies the integral for v(x) by C' = e, reducing the outside 1/v(z) by a
factor of C' but increasing the integrand by the same factor. However, an additive
constant in the integral of v(z)@Q(x) produces the general solution

ylz) = — (/v(x)Q(m) dr + 0) .

These represent different solutions as C' varies. Suppose you have an initial condition
y(x9) = yo. The computation is easiest if you make the definite integral start at xq.
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This gives

yzﬁ (/I:v(t)Q(t)dt%—O) .

The integral vanishes at z( leaving C/v(x). Therefore, you need to set C' equal to
y(xo)v(zp). To summarize: the soluition to y' + P(x)y = Q(x) with initial condition
y(xo) = yo is

1 xX
o) =~ ([ 00 + ylanjote)
() \Ja
For those who would like this broken down into steps, here are the steps.

1.  Get the equation into the form
y + Pl)y = Q(x)
2. Compute the integrating factor
o(z) = e P@)d

Note: you do not have to worry about the +C' in this step; any choice works.

3. Multiply through by v(z) and integrate. On the left-hand side you don’t have to
do the integral because you know it is going to be v(z)y(z). The equation is now

Note: the integral on the right-hand side may or may not be do-able, but in either
case, this time you need to include the +C.

4. Divde by v(z) and you're done.
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Part IV

Multivariable calculus

Before we tackle the very large subject of calculus of functions of several variables,
you should know the applications that motivate this topic. Here is a list of some key
applications.

1. Totals of quantities spread out over an area.

2. Probabilities of more than one random variable: what is the probability that a
pair of random variables (X,Y") is in a certain set of possible values?

3. Marginal cost.

4. Optimization: if I have a limit on how much I can spend on production and
advertising in total, and my profit will be some function f(p,a), then how much
should I invest in production and how much in advertising?

When dealing with these sorts of questions, the functions and their notation can start
to seem difficult and abstract. Geometric understanding of multi-variable functions
will help us think straight when doing word problems and algebraic manipulations.
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10 Multivariable functions and integrals

10.1 Plots: surface, contour, intensity

To understand functions of several variables, start by recalling the ways in which you
understand a function f of one variable.

(i) As a rule, e.g., “double and add 1”
(ii) As an equation, e.g., f(x) =2z + 1

12 5 20 -95 T
3 5 11 41 -189 27 +1

T ‘0
flx) [ 1

(iii) As a table of values, e.g.,

154

104

(iv) As a graph, e.g., - //

- 111

Similarly, a function f of two variables is a way of associating to any pair of values

for z and y (two real numbers) a real number f(x,y). The same options apply for
understanding f.

(i) We can give the rule if it is easily stated, e.g., “multiply the two inputs.”

(ii) We could give an equation, such as f(z,y) = zy.

T 1 1 1 2 2
(iii) We could make a table, e.g., Yy 01 50 =«
flz,y) 1O 1 5 0 2«

(iv) One might graph f.
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You can think of a function of two variables as having two real inputs x and y or
as having one input that is a pair (z,y). The second way makes the domain of the
function into (some subset of) the zy-plane. For more on how to figure out exactly
what subset forms the domain, look at the first few pages of Section 14.1 of the
textbook. We won’t focus on that, but we will use geometry to understand f via its
various visual depictions. There most common way to make a graph of f is to plot
the three-dimensional surface z = f(z,y) as in the following figure.

Another way is to plot the level curves. To do this, you have to figure out which
points (z,y) share the same f-value, say zero, and draw a curve indicating that set.
Then, draw the curve indicating another nearby value such as 1/2,1,—1, etc. This
is shown on the right of the figure above. The book explains this on page 797. The
convention when drawing level curves is to pick some fixed increment, such as every
1/2 or every 100, and draw the level curves corresponding to these regular intervals.

The US Geological Service produces a series of maps drawn this way. These are
contour plots of f(z,y), where f is the elevation and = and y are distance east and
distance north of the center of a quadrangle.
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The elevation example is very important even if you don’t care about hiking. This
is because the traditional way to plot f is to plot the surface z = f(x,y), which
means that our brains are primed to accept f(x,y) as an elevation at the point with
coordinates (z,y). However, this is far from the only use of contour plotting. The
most important application of this is when f(x,y) is profit or some other kind of a
utility function (e.g., the level of satisfaction when you have x dollars in the bank and
a car that costs y dollars). The contour plot of f shows the indifference curves.
Later we can use this interpretation of contour plots along with some calculus to
compute optimal allocations. The next figure shows the contour plot for f(z,y) = zy
along with the height plot z = f(x,y) that you already saw for this function.

All we are doing in this first section is getting used to functions of more than one
variable and their visual depictions. We're almost done, except that we haven’t talked
about functions of three or more variables. We don’t have four dimensions handy,
so we can’t graph z = f(x1, 29, x3). We can still think of f as a function mapping
points in an abstract n-dimensional space to the real numbers, and in the case of
exactly three variables, we can make a contour plot which now has contour surfaces
in three dimensions; see Figure 14.8 in the book. For now, it suffices to practice going
back and forth between the equation for a function of two variables and its visual
representations.

84



10.2 Multivariate integration: rectangular regions

This section is a bit heftier than the previous one because multiple integrals are really,
really important. This is a tricky topic for two reasons. First, students often confuse
the definition of a double integral with the computation of a double integral. I will
try to help you keep these straight. Secondly, non-rectangular regions of integration
(which are the topic of Section 10.3) require deeper understanding of free and bound
variables than you have needed for the calculus you've done so far. Please come to
class having read Section 15.1 of the textbook!

(i) Meaning

Let R be a region in the zy-plane and let f(z,y) be a function. The notation
| rf(z,y)dA is read as “the double integral of f over the region R” and defined
as follows (I am parphrasing what is on page 883 of your textbook).

Divide R into small rectangular regions (ignore for now the fact that these
don’t quite cover R or sometimes extend a litle beyond R). Multiply the
are of each rectangle by f evaluated at some point in that rectange, and
add up all of these products. The integral is defined to be the limit of this
sum of products as the rectangles get small.

What does this compute? In general it computes the total amount of stuff when f is
a density of stuff per unit area. For example, suppose the density of iron ore over a
patch of ground is a function f(z,y) that varies due to proximity to some pre-historic
lava flow. Then [, f(z,y) dA will be the total amount of iron ore in the region R. Do
you see why? You can get the total by adding up the amount in regions small enough
that f doesn’t vary significantly; then the amount of ore in the region is roughly the
area times f evaluated at any point in the region, so we should expect that adding
up these products approximates the total; in the limit, it s the total.

Time for a bunch of conceptual remarks!

1. Notice there is now a quantity dA rather than dx or dy. This means, literally,
“the teeny amount of area”. Starting now, it will be very important to keep track
of the infinitesimals.
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2. The units of [, f rJ(x,y)dA are units of f times units of A. The units of A can
be area, but more generally, they are whatever unit z represents times whatever
unit y represents.

3. Try to see how this is analogous to integrals in one variable. In each case you break
up the (interval / region), then in each small part you evaluate f somewhere, use
this as a proxy for f throughout the small part, multiply by the (length / area)
of the small part, sum and take the limit.

4. You can integrate in three variables. Just chop a 3-D region into subregions, sum
their volumes times the value of f(z,vy,z) somewhere in the region, and take a
limit. In fact, you can do this in any number of variables even though we can’t
visualize space in dimensions higher than three. In Math 110, we’ll stick to two
variables.

Here are some more meanings for a double integral.

Volume. If f(z,y) is the height of a surface at the point (z,y), then [ f(z,y)dA
gives the volume underneath the surface but above the xy-plane. That’s because the
summands (namely the area of a little region times f(z,y) evaluated at a point in
the region) is the volume of a tall skinny rectangular shard, many of which together
physically approximate the region. If you can’t picture this, you have to have a look
at Figure 15.3. Notice the units work: f is height (units of length) and [, f rf(w,y)dA
is volume, which does indeed have units of length times area.

Area. A special case is when f(z,y) is the constant function 1. Who would have
thought that integrating 1 could be at all important? But it is. If you build a surface
of height 1 over a region R, then the volume of each shard is the area at the base
of the shard and the integral is just the limitin sum of these, namely the total area.
Notice the units work: in the example f is unitless, and || rf(2,y)dA is the area of
R, which has units of area.

Averages. By definition, the average of a varying quantity f(x,y) over a region R
is the total of f divided by the area of the region:

Jnf xydA.

f
Average of f over R = Area of R

Probability. This application will get its own treatment in Section 10.4.
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(11) Computing the iterated integral: rectangular regions

Remember how it worked when you learned integration in one variable? It was defined
as the limit of Riemann sums, which intuitively captures the notion of area under a
curve. Then there’s a theorem saying you can figure out the value of the integral
over an interval by computing an antiderivative and subtracting its values at the
two endpoints. Similarly, we have already defined the integral conceptually, now we
need to say something about using calculus to compute it. A lucky fact: we don’t
need anything as difficult as the Fundamental Theorem of Calculus like we did for
one variable integrals. That’s because we assume you already know how to compute
single variable integrals and that can be harnesses to compute the double integral.
Remember, for now we're sticking to to the case where R is a rectangle.

As the textbook does, we start by assuming R is a rectangle a < x < band ¢ <y < d,
chopped up so that each little square has width Az and length Ay. We then add
up the little bits in an organized way. First add all the tall skinny rectangles over a
given x interval as y varies. In the volume interpretation this gives the volume of the
slice of the solid that has width Ax. There is a slice for each z-value in the grid.

Here’s the thing. If you fix a value x = M, then you’re just computing Az times
the area under the one-variable function f(M,y). You know how to do that:
you integrate fcd f(M,y)dy and multiply by Axz. This integral of course depends on
M. Call it g(M). Summing all the slice volumes is the same as integrating g(M)
from a to b. We don’t have to use the variable M, we can just call it z. So the answer
is:

/Rf(x,y)dAz/abg(x)dxv where g(M)Z/Cdf(M,y)dy

This is Fubini’s Theorem (first form) on page 885 which you practiced computing in
the MML problems from Section 15.1. I prefer to put parentheses into the equation
given in the book:

/Rf(a:,y)dAzfab [/Cdﬂx,y)dy] dxz/cd [/abﬂa:,y)dx] . (101)

At this point it would be a good idea to read Examples 1 and 2 in Section 15.1. Also,
you should pay attention to free and bound variables. In the so-called inner integral
fcd f(z,y)dy, the variable y is bound, but z is free. In other words, this integral
represents a quantity that depends on x (but not y). That’s why we can integrate it
against dz in the outer integral, to finally get a number.
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In Example 1 of Chapter 15 of the textbook, they do the integral two ways (z-
direction first versus y-direction first) to show that you get the same answer (that’s
part of Fubini’s Theorem). Sometimes you need to use this to evaluate an integral
that appears difficult: write it in the other order and see if it is easier; one of the
homework problems is on this technique.

Magic product formula

Suppose your function f(z,y) is of the form g(z) - h(y) and your region of integration
is a rectangle [a, b] X [¢,d]. Then

[ ftayia (/jg(x)dz) x (/fh(y)dy) |

Can you see why? It’s due to the distributive law. The Riemann sum for the double
integral actually factors into the product of two Riemann sums. I'll do this on the
blackboard for you because, when written without narration, it just looks like a mess.

One parting word: circling back to the issue of distinguishing the definition from
the computation, the left-hand side of (10.1) refers to the definition — a limit of
Riemann sums; the two expressions after the equal signs are single variable integrals,
computable as antiderivatives. The theorem is asserting that they are all equal.
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10.3 Multivariate integration: general regions

The trickiest thing about learning double integration is when R is not a rectangle.
Then, when you cut into slices, the limits of integration will change with each slice.
That’s OK as long as you can write them as a function of the variable you are not
integrating and evaluate properly. There are four examples in the book (Section 15.2),
plus I'll give you one more here. But before diving into these, we should review how
to write sets of points in the plane.

Writing sets of points in the plane

The notation {(z,y) : blah blah blah} denotes the set of points in the plane satisfying
the condition I have called “blah blah blah”. For example, {(z,y) : 2> + y* < 1} is
the unit disk. You will need to become an expert at writing sets of points in a very
specific manner: the set of points where z is in some interval [a, b] and y lies between
two functions of x, call them g and h. It looks like

{(z.y):a<z<b g(x) <y<h(z)}.

EXAMPLE: can you write the unit disk in this format? For a and b you need the least
and greatest x values that appear anywhere in the region. For the unit disk, that’s
—1 and 1. Then, for each z, you need to figure out the least and greatest y values
that can be associated with that z. For the unit disk, the least value is —v/1 — 22
and the greatest is ++v/1 — z2.

The y-value goes from —v/1 — 22 to +v/1 — 22
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So in the end, the unit disk {(z,y) : 22 +y* < 1} can be written in our standard form

as
{(z,y): =1 <z<1, —V1—22<y<VI1-—2z?}.

This way of writing it naturally breaks the unit disk into vertical strips where x is
held constant and y varies from some least to some greatest value depending on .
I should have said this is “a standard form” not “the standard form” because it is
equally useful to break into horizontal strips. These correspond to the format

{(z,y) :c <y <d, gy) <z <h(y)}

where for each fixed y, the x values range from some minimum to some maximum
value depending on y. You will be practicing a lot with these two formats!

Limits of integration for non-rectangular regions

What I am explaining here is Theorem 2 on page 889 of the textbook. When com-
puting fR f(z,y)dA, if you can write R as a region in the form above.

There are three steps. First, specify the region of integration in terms of varying
limits of integration. Second, use these as limits of integration. If x goes from z to b
while y goes from g(z) to h(z) then the integral will look like fzb fg}ﬁ;) f(z,y)dy dx.
Third, carry out the integration with these limits.

EXAMPLE: Let R be the unit disk and let f(z,y) = 1. The possible z-values in R
range from —1 to 1. So we put this on the outer integral: f_ll [---] . Now fix a value

of x and figure out what the limits are on y. As we have seen, y goes from —+/1 — 22
to v/1 — 22. So now we can write the whole integral as

1 V1—x2
/ / ldy | dx.
-1 |J—V1-a2
When we do the inner integral we get the antiderivatite y, which we evaluate at
the upper and lower limits: y |V \1/% = 2v/1 — 22, Finally, we evaluate the outer

integral, obtaining fjl 2v/1 — z2dx. This is a tough integral if you do it honestly:
integrating by parts and using #18 in the integral table will give you

(1;\/ 1 — 22 + arcsin :1:)

1

-1
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The value of zv/1 — 2?2 is zero at both endpoints, so this evaluates to arcsin(1l) —
arcsin(—1) =7/2 — (—7/2) = 7.

Here are an FAQ about what we just did.

1. When we took the anti-derivative of the constant function 1 why did we get y and
not 7 Answer: we were integrating in the y-variable at that time.

2. How can you know whether the limits on the inner integral will be functions of y
or functions of 7 Answer: if you choose vertical strips then the inner integral is
dy, the outer integral is dz and the limits on the inner integral can be functions of
x but not y.

3. Is it a coincidence that after a complicated computation, the integral came out to
be a very simple expression? Answer: No! It’s because the integral of 1 over a
region gives the area, and the area of a circle is a very simple expression. In fact,
if you were asked to do this integral on a test or homework, you should probably
not do any calculation and just say it’s the area of a circular region with radius 1
and is therefore equal to 7.

Switching the order of integration

You have seen how to take a region R and write it in either standard form: horizontal
or vertical strips. Sometimes, in order to make an integral do-able, you will want
to switch from horizontal strips to vertical strips or vice versa. Starting with one
standard form, you convert to a geometric region R, then write that in the other
standard form. This allows you to switch between an iterated integral with x in the
inside and one with y on the inside.

1 pl o
sinz
ExAMPLE: Compute / / dx dy. Unfortunately you can’t integrate sinx/x.
0 Y Zz

But wait! The region {0 <y <1, y <z < 1} is triangular and can also be written
in vertical strips: {0 < z < 1, 0 < y < x}. The integral is therefore equal to

U sing
/ / dy dx. We can now see that this is equal to
0o Jo

x
/1 ( sinx)
Yy
0 x

x

1
dx = / sinzdr =1 — cos(1).
0

0

91



10.4 Applications: spatial totals, averages, probabilities

No new math in this section, just some applications. Two of them are pretty straight-
forward: integrals to yield total amounts and integrals to compute averages. The
third, probability densities in two variables, will involve a couple of new concepts.

Integrals to compute totals

This is essentially just a reminder that the integral of stuff per unit area over an area
yields total stuff.

ExAaMPLE: The population density east of a river running north-south is f(z,y) =
6000e " people per square mile. The county is divided into quadrants as shown in
the figure. Roughly how many people are there in the east quadrant?

River
y=x
East
Quadrant
y=-x
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SOLUTION: Make coordinates in which the quadrant is the region represented in
standard form by the set

{(z,y): 0< 2 <00, —z <y <a}.

We're not going to re-do the theory of improper integrals in two variables, we’ll only
deal with cases where you can just plug in oo and get the right answer. The region
is in standard form, so the total population is given by

/ / 6000~ dy dz .
0 —x

The inner integral might look tough but it’s not (look carefully at which is the variable
of integration):

T

/ 6000 e %] dy = 6000 ye > | = 12000ze " .

—T

—X

T

The outer integral can then be done by the substitution u = e~ 2, leading to

o9}

/ 12000 ze™* dx = —6000 e
0 0

= 0 — (—6000) = 6000 .

This is a good example of an integral which is not too hard one way but impossible
the other. Try to integrate e *" against dz rather than dy and you will be stuck at
the first step! If you come across this, you will always want to switch the order of the
integrals.
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Averages

The average of a quantity over a region is just the total of the quantity divided by
the size of the region.

ExamMpPLE: What is the average of e” over the triangular region where 0 <z <y <17

R is the region
O<x<y<l

SOLUTION:

1y 1 1
/ / exdxdy:/ (e"]9) dy:/ (e —1)dy=e—2.
o Jo 0 0

The average value is the total, e — 2, divided by the area. The area is 1/2 therefore
the average value is 2(e — 2).

ExAMPLE: The cost of providing fiber optic service to a resident is proportional to
the distance to the nearest hub, with constant of proportionality 5 dollars per meter.
If a township is a square, two kilometers on a side, and there is a single hub in the
center, what is the average of the service cost over this area?

SOLUTION: Make coordinates with the hub in the center. The township is the square
[—1000, 1000] x [—1000, 1000], with = and y representing East-West displacement and
North-South displacement in meters. The cost of providing service to the point (z,y)

is given by f(z,y) = 5\/2? + y?. The average is therefore given by

1 1 1000 1000
Ave.:—/5\/az2+y2dA: 2/ / Sv/a? +y?dydr.
R 1000% J 1000 /- 1000
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If you can do this integral, you are smarter than I am. I tried it numerically with
a b x 5 grid (I used midpoints and I used symmetry to restrict to the quadrant
[0,1000] x [0,1000] in order to make my grid squares smaller) and got roughly $3812
which is pretty close to what my computer tells me is the correct numeric value of

$3826.

Two-variable probability densities

It is often useful to consider a random pair of real numbers, that is, a random point
in the plane. A probability density on the plane? is a nonnegative function f(z,y)
such that [ f(z,y)dA = 1. As before, the mean of the X variable is [z f(z,y)dA
and the mean of the Y variable is [y f(z,y) dA. Here are a couple of special cases.

EXAMPLE: UNIFORM DENSITY ON A REGION. Let R be a finite region and let
f(z,y) = C on R and zero elsewhere. For this to be a probaiblity denstiy, the
normalizing constant C' must be the reciprocal of the area of R (that’s because the
integral of 1dA over R is just the area of R). For example, if R is the interior of
the unit circle then C' would be 1/x. If R is the recangle [a,b] X [¢,d] then C' =

1/((b - a)(d - o)),

EXAMPLE: PLANAR STANDARD NORMAL DISTRIBUTION. Let f(z,y) = e~ @ +¥7)/2,
This has integral equal to 1 because it is the product of (1/v/27)e*”/2 and (1/v/27)e¥’/2,
which we already know integrate to 1 over the whole plane (—o0, c0) X (—00, 00) be-
cause each one is just the one-variable standard normal density. This uses the “magic
product formula”.

A two-variable probability density corresponds to picking simultaneously two numbers
X and Y such that the probability of finding the pair (X, Y") in some region A is equal
to the integral of the density over the region A.

EXAMPLE: A probability density on the rectangle [0,3] x [0,2] is given by Ce™*.
What is C', and what is the probability of finding the pair (X,Y") in the unit square
[0,1] x [0,1]7

4The integral, if it is over the whole plane, is technically an improper integral, but we won’t
worry about that; in all our examples either the density will be nonzero on just a finite region or it
will be obvious that there is a limit as the region becomes infinite.
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SOLUTION: We are integrating over a rectangle and C'e™" is a product of g(x) = Ce
and h(y) = 1. By the magic product formula, the integral is

(/OsCexdm) X </02dy) =20-(1—¢7?).

1

Therefore C' = 2(1—_3) which is just a shade over 1/2. Now using the product
—e
formula again to integrate over the unit square gives a probability of
/ Co™dA = C(1—e V) = = 03326
e = —e = ~ U. .
[0,1]x[0,1] 2(1—e3)
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11 Partial derivatives and multivariable chain rule

11.1 Basic defintions and the Increment Theorem

One thing I would like to point out is that you've been taking partial derivatives
all your calculus-life. When you compute df /dt for f(t) = Ce ", you get —Cke*t
because C' and k are constants. The notation df /dt tells you that ¢ is the variables
and everything else you see is a constant. If we use the notation f’ instead, then we
are relying on your knowing which is the independent variable. It’s usually called
something like “t”, not “C” or “k”, but every now and then we end up computing
df /dk or df /dC, so watch out! The only rule is: everyone should understand which
is the independent variable.

So now, studying partial derivatives, the only difference is that the other variables
aren’t constants — they vary — but you treat them as constants anyway. It’s not a big
difference because really, what is a constant? It’s always possible to imagine some
quantity changing. Mathematically we just need to be precise about what is holding
steady and what is changing. In this section, only one variable at a time will change.
Then in the next section (chain rule), we’ll change more than one independent variable
at a time and keep track of the total effect on the independent variable.

We assigned plenty of MML problems on this section because the computations aren’t
much different than ones you are already very good at. You can read the basics in
Section 14.3. I will include one example as a self-check; if you are not able to cover
up the answer and figure it out pretty easily, then you need to go back and re-read
Section 14.3.

a1
¢ . What is or at the point (3,1,1) and what does

ExXAMPLE: Let t =

this quantity signify?

Answer: treating everything other than ¢ as a constant, by either the chain
rule or the quotient rule you get —zq(e? — 1)/(1 + xtq)?. Evaluating at
the point (3,1,1) gives —3(e — 1)/16.

This means that if ¢ is changes by a small amount from 1 while z is held
fixed at 3 and ¢ at 1, the value of f would change by roughly 3(e — 1)/16
times as much in the opposite direction.
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The Increment Theorem

By now I'm sure you remember the linearization in one-variable. The value of f(x)
near the point x = a is well approximated by L(x) = f(a) + f'(a) - (x — a). Suppose
we now want to approximate f(x,y) near a point (a,b) where we know the value.
Suppose, in fact that we change only x but not y. Then we might as well treat y as
a constant and write

Flo+ Aay) = Flay) + (Aa)- 5 ().

It’s a partial derivative, not a total derivative, because there is another variable y
which is being held fixed. Similarly, if we moved only y we would have

of
I hope it doesn’t seem like too much of a leap to say that if you move both x and y
you’ll get both of these effects:

of
ox

[,y + Ay) = f(x,y) + (Ax) (z,9). (11.1)

() + (Ay) - ‘;—‘;

Equation (11.1) is called the Increment Theorem in the textbook and appears as
Theorem 3 on page 818 (Section 14.3). You might wonder whether it’s OK to assume
that you can just add the two effects from moving = and moving y. In fact, after you
move z, you really should be computing the y increment according to the df/Jy at
the new location, (x + Ax,y). However, it’s only an approximntion anyway, and the
new partial derivative is close enough to the old that the computation with the new
partial derivative matches the computation with the old partial derivative to within
the error you already introduce by linearizing.

EXAMPLE: About how much does z%/(1 + y) change if (z,y) changes from (10, 4)
to (11,3)? Here Az = 1 and Ay = —1. We compute f, = 2z/(1 +y) and f, =
—2?/(1+y)? so so f,(10,4) =4 and f,(10,4) = —4. Thus,

Af ~ f.Az+ f,Ay =4(1) + (—4)(—1) =8.

In fact, f changes from 20 to 30.25 so the 8 was kind of a crude estimate, but that’s
because Az and Ay were pretty big. If we choose 0.1 and —0.1 instead, we get a
linear estimate of Af = 0.8 which is very close to the actual 0.818.. ..
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Application: marginal rates

Suppose the cost of a proposed building is a function f(A,q,¢) where A is the area
of usable space in square feet, ¢ is an index of the quality (thickness of walls, gauge
of wiring, level of insulation, quantity of lighting, etc.) and ¢ is a location param-
eter measuring, for example, the desirability of the location. The average cost per
square foot for a given proposed building is, by definition, f(A,q,¢)/A. However,
this statistic is far less useful than the marginal cost per square foot, that is, df /0A.
That’s because most decisions are about whether to put a few extra dollars into one
of these categories or to trim a few bucks from another category. Therefore, it is most
useful to know how many dollars more you will spend or save with each square foot,
rather than what all the square footage costs that is already in all the proposals being
compared.

EXAMPLE: The total number P of people exposed to an recurring ad is a function of
its market share, M, and the length of time, ¢, that stays in rotation®. The marginal
increase in exposure per time run is df/0t. The right time to yank the ad is when
v-0f /0t drops below the cost per time to run the ad, where v is the value in dollars
per unit of exposure. Note that the units match: v has units of dollars per exposure,
Jf /0t has units of exposure per time and the cost to run the ad is priced in dollars
per time: ($/exp) (exp/t) = $/t.

Note: the notion of marginal rates should already be familiar from univariate calculus.
There isn’t much added here, except to say that it makes sense to compute marginal
rates when there are many quantities that could vary, by varying only one.

Branch diagrams

In applications, computing partial derivatives is often easier than knowing what par-
tial derivatives to compute. With all these variables flying around, we need a way of
writing down what depends on what. We do this by writing a branch diagram. Here
are some common ones.

5Tt is not just the product of these because the longer it runs, the more redundancy there is in
people seeing it multiple times.
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w is a function of x
and y, both of which

The branch diagram . .
are functions of a sin-

Y f(;lr , thf ordinary X Y gle variable t (see
cham ruie. page 823 of the text-
book).
x t
f w
z depends on x w is a function of
and y but y is z z,yand z, but zis
y .
really a func- really a function of
tion of x the other two.
x X Y

Any variable at the top is an dependent variable. Any variable at the bottom is
an independent variable; these drive the other variables and are the only ones we
tweak directly. The variables in the middle are called intermediate variables. The
independent variables drive them and they drive the dependent variables.

11.2 Chain rule

Think about the ordinary chain rule. A useful metaphor is that it is like a gear
assembly®: y depends on u, which in turn depends on x. Each unit increase of z
increases u by u/(z) many units. Each unit increase of u inceases y by 3/(u) units.
Therefore each unit increase in = produces u'(x) - y/(u) units increase in y. That’s
what’s going on in the first branch diagram.

In the second diagram, there is a single independent indpendent variable ¢, which we
think of as a gear driving both x and y, while both x and y drive z. I am going to
try now to explain why
dy Oydu Oydv
At~ oudt vdt

50K, you got me, that’s a simile not a metaphor.

(11.2)
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When ¢ increases by At, both v and v increase. The increases are roughly (At)(du/dt)
and (At)(dv/dt) respectively. As we just saw at the end of the previous section (with

the function z(x,y)) each increase in u produces an increase in y that is dy/Ju times

du 0
as great. So the increase in u of At gives gives an increase in y of roughly Atd—?a—y.
u

Simultaneously, the increase in ¢ has produced an increase in v which produces another

dv 0
increase in y of roughly AtZ22Y | Thus the total increase in y is roughly

dt Ov

Oydu Oydv
At {8u dt * Jv dt}

This means that the rate of change of y per change in ¢ is given by equation (11.2).
Note that we use partial derivative notation for derivatives of y with respect to u and
v, as both v and v vary, but we use total derivative notation for derivatives of u and v
with respect to t because each is a function of only the one variable; we also use total
derivative notation dy/dt rather than Jy/0t. Do you see why? Partial derivative
notation would mean that ¢t was changing while something else was being held fixed,
which is not the case. Rather, all variables are functions of the single variable ¢.

That’s the basic story. There are lots of variations, depending on how many in-
dependent variables there are (up till now there has been only one, all the others
ultiimately being functions of the one), how many intermediate variables and how
they are related.

Where to evaluate?

The one thing you need to be careful about is evaluating all derivatives in the right
place. It’s just like the ordinary chain rule. For example, in (11.2), the derivatives
du/dt and dv/dt are evaluated at some time t,. The partial derivative dy/du is
evaluated at u(to) and the partial derivative dy/0v is evaluated at v(ty).

Example: Chain rule for f(z,y) when y is a function of z

The heading says it all: we want to know how f(z,y) changes when x and y change
but there is really only one independent variable, say x, and y is a function of x. This
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is captured by the third of the four branch diagrams on the previous page. Applying
the chain rule gives
df _of of
dv  Or Oy
The notation really makes a difference here. Both df /dx and 0f/0z appear in the
equation and they are not the same thing!

(11.3)

Example: Derivative along an explicitly parametrized curve

One common application of the multivariate chain rule is when a point varies along
a curve or surface and you need to figure the rate of change of some function of the
moving point. The classical economics application is that price and quantity are mov-
ing together along the demand curve and we want to figure out how revenue changes
along this curve (and in particular, we want to find where the revenue is maximized).
In this section we solve the problem when the curve is known explicitly, saving the
case of implicitly defined curves until we have discussed implicit differentiation.

Suppose a point varies along a curve as a function of time, and its coordinates are
explicitly known: the coordinates at time ¢ are (z(t),y(¢)). The rate of change of the
function g(x,y) with respect to time along the curve is given by the formula we just
computed: x and y are functions of ¢ and ¢ is a function of x and y, so

d dg d dg d
dg _9gdz  Ogdy

dt ~ dzdt  Oydt (114)

I hope you realize this is the exact same equation as (11.2) but with the letter g in
place of y, and x and y in place of v and v.

11.3 Implicit differentiation

The chain rule helps us to understand ordinary implicit differentiation. In Section 14.4
on page 826 the textbook re-explains finding the slope of an implicitly defined curve
(first discussed in the textbook in Section 3.7). Here follows a quick recap of this.
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Slope of an implicitly defined curve

Suppose a curve is defined by F(x,y) = 0. What is the slope of its tangent line?
That’s the same as asking, if we treat y as a function of x along the curve, what is
dy/dx? This is just (11.3) run backwards — we know that df /dz = 0 and want to
solve for 3. Differentiating the relation F(z,y) = 0 with respect to x, where y is an
intermediate variable that is a function of z, the chain rule gives 0 = F, + F, dy/dz.
Solving for dy/dx gives (see page 826 of the textbook):

dy E,

=——. 11.5
dx F, (11.5)

Derivative along an implicitly parametrized curve

Now suppose a curve is defined implicitly by F'(x,y) = 0. How fast does the function
g(x,y) change along the curve? We had better decide: how fast does g(x,y) change
with respect to what? Suppose we treat y as a function of x along the curve and ask
for dg/dz. Using the chain rule for this case (11.3)

dg_ 99 Odgdy
dx Or Oy dx

dg 0g OF/0x

dr Oy OF/dy’

In the last line, we used the expression for dy/dx given by implicit differentation (11.5).

Implicitly defined surfaces

This is just like curves defined by an equation, only now there are three variables.
Any equation F(z,y, z) = 0 defines a surface. If any two vary freely, the third changes
as a function of the other two. When this happens, we can ask for the rate of change
of one with respect to another. What should 9z/0x mean in this context? It means:
consider z as a function of x and y, then find out the rate of change in z when x
varies, y is held constant, and z changes in order still to satisfy the equation. Please
take a monent to think this through now.
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Computationally, how do we find dz/0x when F(x,y,z) = 07 We differentiate,
keeping in mind the branch diagram. Letting w denote F'(x,y, z), it is the same as
one we have seen before:

w

X y

The variables vary in such a way that w remains at zero. Taking the partial derivative
with respect to x of the equation w = 0 gives

O_a_w( ) _a_F+a_F+%
"o YT T 9 T o T o
Solving for 0z/0x we see that

0: _-F,

dr F,

This looks exactly the same as for two variables, z and z only; compare to equa-
tion (11.5). This is not a coincidence. If z is a function of z and y and we hold y
constant, then y is playing a similar role to the constant k in the function e**. The
problem really does reduce to the two variable problem. Let’s try it on Example 4
from Section 14.3 of the textbook.

EXAMPLE: Find 0z/0x when the equation F/(z,y,2) =z +y+ Ilnz —yz = 0 defines
z as a function of z and y. We compute F, = 1 and F, = 1/z — y therefore

0z -1 z

%:1/,2—3/ yz —1°

You should compare this to how the book does it (page 813); I think this way is
simpler than the book’s but either is OK.

104



11.4 Featured application: indifference curves

Remember level curves from our first day of multivariate calculus? They’re back, in
an economic application, under the name of “indifference curves”. Suppose that the
independent variables x and y represent quantities of two different things that will
rival each other for importance in a single scenario.

Example 1: z is the horsepower of a car and y is its MPG.

Example 2: x is ounces of pizza at a meal and y is pints of FroYo.

Figure 4.5
Indifference Curves for Horse-
power and Fuel Economy. The
typical new car buyer's prefer-
ences for horsepower and fuel
economy correspond to the family
of indifference curves shown in
this figure. Consumers are willing
to give up roughly 40 horsepower
to Increase fuel efficiency from

10 to 15 mlles per gallon (com-
pare points A and B), but they are
willing to give up only 6 horse-
power to increase fuel efficiency
from 30 to 35 miles per gallon
(compare points C and D).

10 15 20 2 30 35 40
Miles per galion

o Goldberg, “Product Differentiation aad Oligopoly in Internationl Markets: The Cause of the us.
" Econometrica 63, July 1995, pp. 891-951.

An indifference curve is a set of points in the z-y plane corresponding to bundles that
the agent (often a consumer) likes equally well. The two examples above are taken
from Berheim and Whinston (current textbook for BEPP 250). The indifference curve
for horsepower versus fuel economy is taken from actual data. The indifference curve
for pizza versus FroYo is a made up model. In either case, the indifference curves are
just level contours for a utility function u(x,y). The food example uses the utility
function u(x,y) = xy and shows indifference curves of zy = 10, zy = 20 and zy = 30.

Indifference curves are important for several reasons, one of which is that they describe
incentives and reactions to changes in the quantities x and y. The marginal rate of
substitution is the amount of x an agent would be willing to give up in order to
increase y by one unit. This is not a static quantity, rather it depends on the present
levels of x and y. If a group of diners has 10 pints of FroYo and only three ounces
of pizza, they will not be willing to give up much pizza for one more pint of FroYo,
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whereaas a group with 60 ounces of pizza and half a pint of FroYo might well give up
a lot of pizza for a pint of FroYo.

Two points on the same indifference curve, such as (60, 1/2) and (20, 3/2), determine
an equivalence of utility. The slope of the line segment between these two points is a
ratio for a trade the agent is willing to make in either direction (see the straight line in
the figure). But the point (20, 3/2) is quite far from (60, 1/2) and does not represent
the rate of substitution if the consumer is able to make continuous small adjustments.
As the point (z,y) on the curve u(x,y) = 30 approaches (60,1/2), the slope of the
line segment approaches the slope of the tangent line to the curve u(z,y) = 30 at
(60,1/2) (dashed line in the figure).

T T T T T T T T 1
0 20 40 60 &0 100

Mathematically, the marginal rate of substitution is defined to be the negative of the
slope of this tangent line (negative because the slope represents one quantity going
down while the other goes up). This slope is just dy/dz, which we know how to
compute via implicit differentiation. In the pizza and FroYo example, the level curve
is xy = 30 and implicit differentiation gives y + z(dy/dx) = 0. Thus dy/dx = —y/z.
At the point (60,1/2), this gives a marginal rate of substitution of 1/120 pint of
FroYo per ounce of pizza. On the other hand, at the point (3, 10), the marginal rate
of substitution is 10/3 pints of FroYo per ounce of pizza. Whether or not you think zy
is a reasonable utility function for this scenario, this model sheds light on consumer
behavior and how to model it.
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12 Gradients and optimization

12.1 Vectors

Think of a vector as an arrow drawn from one point in the plane or three dimensional
space to another. The arrow from (1,1) to (2,3) is shown in the figure. The only
tricky thing about the definition is that we don’t care where the arrow is drawn, we
only care about its magnitude (length) and direction. So for example the dashed
arrow represents the same vector, started at the point (5/2,0) instead of (1,1). In
other words, the vector represents the move from the beginning to the end of the
arrow, regardless of the absolute location of the beginning point.

(2,3)

l
/
/

(1,1) '

¢

The vector of unit length in the z-direction is called i, the vector of unit length in the
y-direction is called j, and, if we're in three dimensions, the vector of unit length in
the z-direction is called k. A vector that goes a units in the z-direction and b units
in the y-direction is denoted ai+ bj It’s called that because you can add vectors and
multiply them by real numbers (see definition below). For example, the vector in the
picture should be written i+ 2J

Definition of adding vectors. First make one move, then make the
other. You can do this by sliding one of the arrows (don’t rotate it!) so
it starts where the other one ends, then following them both. If you add
ai + bj to ci + dj you get (a + ¢)i+ (b+ d)j.
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Definition of multiplying a vector by a real number. Don’t change
the direction, just multiply the length. As a formula: multiply ai + bj
by ¢ you get aci + bcj. This easy formula hides an important fact: if
you mutliply both the i and j coefficients by the same real number, the
direction doesn’t change. That’s why the two vectors in the right-hand
figure below are on top of each other.

The left-hand side of the figure below shows the vector i+ 2j being added, tip to tail,
to the vector i — J The result is the vector 21 + J show by the dotted arrow. In the
right-hand figure, the vector i — j is multiplied by the real number v/6 which is a little
under 21/2.

The length of a vector can be computed by the Pythagorean Theorem. The length
of ai + bJ is va? + b2. For example, the vector i + 2_] which appears in the previous
figures has length v/5. The length of the vector v is denoted |v|. A unit vector is any
vector whose length is 1. Often we want to know a unit vector in a given direction:
what vector, having the same direction as v, has length 17 Answer: divide v by |v|
(that is, multiply v by the reciprocal of its length). Self-check: what is the unit vector
in the direction of our favorite example vector, v =i+ 23 ? The answer is posted
in a link on Canvas (first student who actually wants to look at it, tell me and I'll
activate the link).
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The dot product

The dot product of the vectors ai + bj and ci + dj is defined to be the number (it’s
not a vector!) ac+ bd. You'll see next class why this quantity is important. The last
thing you need to know is a fact: the dot product of two vectors v and w is equal to
the product of the lengths times the cosine of the angle a(v, w) between them:

v w = |v||w]|cosa(v,w) (12.1)

Again, there is something important hidden in the content of this formula. You
already know one way of computing the dot product: multiply corresponding compo-
nents and add them. The formula gives you another way. The first way is algebraic.
The second way is completely geometric: you could do it by seeing only the picture.
The dot product theorem says that these two computations produce the same result.
Take a minute to register this, because it will come up in applicaitons, problem sets
and, yes, exams.

Parallel vectors

Vectors in the same direction are called parallel. How do you tell whether v = ai+ bj
is parallel to w = i+ dj ? This is the same as saying you can multiply one vector
by real number to get the other. This is the same as asking when the fraction ¢/a is
equal to d/b. To test this you crossmultiply, arriving at the condition

ad —bc=0. (12.2)

Three or more dimensions (optional paragraph)

In three dimensions a generic vector will be the sum of three components: ai+bj +ck.
The basic definitions are still the same. A vector v is still defined as having a length
and a direction. Both the algebraic and the geometric formulae for the dot product
look analogous to they way they looked in two dimensions and give the same answer.
Addition of vectors and multiplication of a vector by a real number still have both
an algebraic and a geometric definition that give the same result. In fact, you define
vectors in any dimension. You can’t visualize it, and you run out of letters after
i,j, R, but all the math still works the way it did in two dimensions. Our treatment is
very minimal: we will stick to two dimensions. If vector calculus intrigues you then
consider taking Math 114.
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12.2 The gradient

Let z be a function of x and y. Think of this for now as the elevation at a point z units
east and y units north of a central point. Pick a point (zg, o), let a = (9z/0x)(x0, yo)
and let b = 0z/0y) (w0, yo). Using these we can figure out the rate of elevation increase
for a hiker traveling on the path (z(t),y(t)). By the multivariate chain rule, if the
hiker is at the position (zo, yo) at some time ¢y, then the rate of increase of the hiker’s
elevation at time t, will be ax’(t) + by (t) evaluated at t = t,.

Here’s the important point. If we calculate a and b just once, we can figure out the
rate of elevation gain of any hiker traveling with any speed in the z- and y-directions.
The vector ai + gj is called the gradient of z at the point (xg,y¢) and is denoted
Vz(xo,y0) or just Vz. This definition is given in a box in the middle of page 833 in
Section 14.5 of the textbook:

0z

? 0z A
Vz(xo,10) = %(950790) 1+ a_y(fo, Yo) -

~

This leads to the idea of the directional derivative: what is the rate of elevation
gain per unit traveled in any direction? The key here is “per unit traveled”. The
unit vector w in the direction making an angle of  with the positive z-direction is
(cos0)i + (sin)j. Therefore, a hiker traveling at unit speed in this direction gains
elevation at the rate of acosf + bsinf. That’s the dot product Vz - w. THIS IS
THE MAIN REASON WE COVER VECTORS AND DOT PRODUCTS IN THIS
COURSE.

Here are some conclusions you can draw from all of this. Let L = |Vz(zo,yo)| be the
length of the gradient vector of z at the point (g, o). Now consider all directions the
hiker could possibly be traveling: which one maximizes the rate of elevation gain? Let
a be the angel between the gradient vector and the hiker’s direction in the z-y plane.
We have just seen that the rate of elevation gain per unit motion in the direction
w is Vz - w. The length of Vz is L and the length of w is 1, so by formula (12.1),
the dot product is Lcosa. This cosine is at most 1 and is maximized when the
angle is zero, in other words, when the hiker’s direction is parallel to the gradient
vector. In that case the directional derivative is L. If the hiker is going in a direction
making an angle a with the gradient then the rate of elevation gain per unit distance
traveled is Lcosa. If a is a right angle then this rate is zero. We can summarize
these observations in a theorem, which constitutes more or less the “Properties of the
directional derivative” stated in a box on page 834.
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Gradient Theorem:

(¢) The direction of greatest increase of a function z(z, y) at a point (¢, yo)
is the direction of its gradient vector Vz(zo,yo). The rate of increase per
unit distance traveled in that direction is the length of the gradient vector
which is given by

0 0
L = —2(9607 Yo)? + 8_2(960"%)2 .

ox

(77) In general the directional derivative in a direction making angle a
with respect to the gradient direction is equalt to L cos a.

(77i) In particular, when « is a right angle, we see that the rate of elevation
increase in direction « is zero.

This theorem is, more or less what’s in the box on page 834 entitled “Properties
of the directional derivative”. Mull it over for a minute. By computing partial
derivatives, we can stake out the direction of maximum ascent, and it will have
the property that the direction of zero elevation gain is at right angles to it (also,
the direction of maximal descent is exactly opposite). Remember level curves? Along
these, the elevation is constant. Therefore, traveling in these directions makes the rate
of elevation gain zero. We see that the tangent to the level curve must be in the zero
gain direction, that is, perpendicular to the gradient. This is shown in Figure 14.31 on
page 835. A real life illustration is shown in the picture on page 831 of the textbook.
A contour map shows contours of an actual mountainside in Yosemite National Park.
These are perpendicular to the directions of steepest ascent and descent. You can see
this because streams typically flow in the directions of steepest descent. The streams
and the level contours are marked on the map and do, indeed, look perpendicular.

Some rules for computing

We won’t need a lot of rules for computing gradients because we’ll always be able to
compute them by hand but it is good to look them over once. They’re collected in
a box on page 836 of the textbook. Basically all the rules that work for derivatives
work for gradients because in each component separately (the i component, etc.) the
gradient is a kind of all-encompassing partial derivative, and partial derivatives obey
these laws.
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12.3 Optimization
One-paragraph review of univariate optimization

Here is a brief review of optimization in one variable (also known as solving max-
min problems) which you can skip if you don’t need. Suppose you want to find the
maximum of a differentiable function f on an interval [a,b]. If the maximum occurs
at a point z in the interior of the interval then f’(z) must be zero (if f’(z) > 0 then
a point just to the right of z will have a higher value of f, whereas if f'(z) < 0
then a point just to the left of x will have a higher value of f). Therefore, to find
the maximum, you list all the critical points (points where f’ = 0 and both the
endpoints, and see where among these points f has the greatest value. It is the same
with minima. List all the critical points of f and the endpoints, and determine the
least value of f among this list of points.

The maximum and minimum of f on the
interval shown must occur either at the
critical points (solid dots) or at the end-
points (open dots). In fact the maximum
value (upper dashed line) and minimum
value (lower dashed line) occur at critical
points in this case.

[(x)

Optimization along a curve

Now switch gears and consider a function f(x,y) of two variables. There are two
kinds of optimization problems that commonly occur. One is to find the maximum
or minimum of f on a curve. The second is to find the maximum or minimum of f
over a region in the plane.

Conceptually, optimization along a curve is easy: read f “as you go along the curve”;
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find the critical points where the derivative of the readout is zero; the maximum will
have to occur at one of these places; check them all. Computationally, the tricky
part is to describe the curve in equations, then use those equations to compute the
derivative along the curve.

The description of a curve v can take one of three forms. It could be given by some
function y = g(x). It could be given parametrically by ((x(t),y(t)). Finally, and most
commonly, 7 could be given implicitly, meaning it is the solution set to the equation
H(z,y) = 0 for some function H. We treat these in the order: parametric, function,
implicit, because each computation relies on the previous one.

Parametric case: the derivative along (x(t), (y(t)).

If the curve v is paramterized as (z(t),y(t)), then the derivative of f along v is just
V f - v where v is the velocity vector z/(t)i + y/(¢)j. In this case, finding the points
where the derivative of f along ~ vanishes boils down to solving

0 0
O+ 05

Self-check: what does it mean that the derivative of f along the curve (z(t),y(t)) is
given by (12.3)7 This formula computes the rate of change of what with respect to
what?

0. (12.3)

Function case: the derivative along y = g(z).

If v is paramtrized by y = g(z) then you can use the parametric description = =
x,y = g(x) so that this equation becomes

of ., \0f
O +g <$)8_y

Self-check: again, this is the rate of change of what with respect to what?

=0. (12.4)

Implicit case: the derivative along H(x,y) = 0.

Finally, suppose that 7 is given implicitly by H(z,y) = 0. Recall that we know
how to find the slope dy/dz of the tangent line to the level curve H(z,y) = 0. By

implicit differentiation, we computed dy/dr = —H,/H,. Therefore we can apply
equation (12.4) with ¢'(t) = —H,/H,. We get 0f/0x — (H,/H,)0f /0y = 0, which
simplifies slightly to
of of
H—-H,—=0. 12.5
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IMPORTANT GEOMETRIC INTERPRETATION OF (12.5):

The gradient of H is H,i+ Hyj. The gradient of f is fzi + fyj. The test for these
to be parallel is given by applying (12.2) to these two vectors. This results precisely
in (12.5). In other words:

The critical points of f along a level curve of H are those points where
the gradients of f and H are parallel.

P1cTORIAL EXAMPLE: The figure shows a black constraint curve, H(z,y) = 0, along
with contours for another function f(z,y). The maximum of f along the curve
H(x,y) = 0 is the place where the level curves, when you move from higher to lower,
just hit the black curve. At this point, the curves are tangent and the gradients are
parallel. The single arrow represents the directions of both gradients.
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12.4 Optimization over a region

If the maximum of f on the region R occurs at an interior point, then both partial
derivatives must vanish there. Why? If one of the partials, say df/0z is positive,
then the value of the function is just to the right is greater. If, say df/dy is negative,
then the value of f just below is greater. And so forth. Asking that both partial
derivatives vanish is the same as asking that the gradient vanishes. Therefore, we
have the following procedure.

To find the maximum, find all the places inside R where the gradient
vanishes, compute f at these places and take the maximum among these,
and compare to the maximum of f on the boundary of R.

Note: the last part, finding the maximum on the boundary of f, unless this boundary
is very simple, relies on knowing how to do constrained optimization.

ExamMpPLE: What is the maximum of the function z 4+ 2y on the region R where the
unit circle intersects the first quadrant?

SOLUTION: The gradient of f(z) = z + 2y is the vector i+ 2j. This never vanishes
so the maximum of f is NOT in the interior of the unit circle. The boundary of the
region R is made of three pieces: the line segment on the z-axis from the origin to
(1,0); the line segment on the y-axis from the origin to (0,1); the arc of the unit
circle in the first quadrant. The maximum of f on each line segment occurs at the
endpoint away from the origin, with values 1 and 2 respectively.

To ﬁnd the maximum of z + 2y on the arc 22 +y? = = 1, we compute the gradient of
x? + y? which is 27l + QyJ This is parallel to Vf = i+ 23 when the cross-multiple
2(2z) — 1(2y) = 0. This happens when y = 2z. Plugging in 22 + (2x)% = 1, we find
that = = 1/y/5 and y = 2/v/5. There, f(z,y) =z + 2y = 1/V/5+4/V5 = 5//5 =
V5 & 2.23606. This beats all the other maxima, therefore the global maximum of
& + 2y in the unit circle in the first quadrant is v/5 and is achieved at (1/v/5,2/v/5).

ExAMPLE: Where is the maximum of f(z,y) = z/(14+2*+y?) on the disk of radius 27
The critical points on the interior are where both partial derivatives of f vanish. The
partial derivatives, when expressed with denominator (1 + 2% + y*)? have respective
numerators —2zy and 1+1* —x?. Setting these equal to zero gives the points (41,0);
here f(z,y) = £1/2. On the boundary, the denominator is 5 so f can be no more
thna 2/5, therefore the overall maximum is 1/2 at the point (1,0).

115



Application

Let’s go back to the pizza and FroYo example from Unit 11.4, but without numbers.
Let H(z,y) be the utility of a consumer who gets x ounces of pizza and y pints of
FroYo. Let f(z,y) be the cost to me of producing = ounces of pizza and y pints of
Froyo. For my ten dollar family bargain, I need to offer a pair that is on the curve
H(z,y) = ¢ because that’s what Burger Chef is offering and I will lose customers if
my pizza-FroYo combo is less desirable than theirs. But my function f is different
from Burger Chef’s because my prodution line is different. Question: what bundle
should I offer?

In mathematical terms, What value of (x,y) on the curve H(z,y) = ¢ minimizes
f(z,y)? We just saw the answer to that: it is either an endpoint of the curve or a
place where V f is parallel to VH. Let’s interpret the parallel gradients in economic
terms. Parallel gradients at a point occur when the tangent lines to the level curves
are the same at that point. These tangents tell me the marginal rate of substitution.
Remember the FroYo example. The tangent to H(x,y) = 30 at the point (60,1/2)
tells me the marginal rate of substitution. Consumers at this point are indifferent
between another ounce of pizza and another 1/120 point of FroYo. The tangent to
the level curve of f at this point tells me the rate of substitution for costs: how many
extra pints of FroYo can I make from the cost savings on each fewer ounce of pizza?
If the two slopes are not the same, then I can slide along the customers indifference
curve one direction or the other, decreasing my costs while maintaining the same
customers. The only way I can be at the minimim cost point on the consumers’
indifference curve is to be at a point where the slopes are parallel.

ExAMPLE: Using the numbers H(x,y) = zy from the original pizza and FroYo
example, suppose my cost function is a simple linear function: it coses 10 cents to
produce each ounce of pizza and $1 for each pint of FroYo. Thus f(z,y) = (0.1)z+y.
The gradient of a linear function is constant: Vf = (1/ 10)i + j. The gradient of
H is yi+ zj. These are parallel when y — x/10 = 0. At what point on the curve
H(z,y) = 30 does this occur? We solve

z = 10y
zy = 30

to get y = v/3 and = = 10v/3. Look up the approximate value v/3 = 1.732. .. on your
cheatsheet. In other words, the optimum combo meal for me to sell is (roughly) a 17
and a third ounce pizza and a pint and three quarters of FroYo.
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