1. CONSTRUCTING QUATERNION AND DIHEDRAL EXTENSIONS BY CLASS FIELD THEORY.

This problem has to do with constructing degree 8 quaternion and dihedral extensions using class
field theory.

. 1. Suppose H is a subgroup of finite index in a group G. The transfer homomorphism

(L1)

(1.2)

Verg : G® — H*
between the maximal abelian quotients of G and H is defined in the following way. Let T

be a set of representatives for the right cosets of H in G, so that H\G = {Ht: 1€ T}. ¥
g € Gandt €T, then tg = hy st for some t’ € T and hy: € H. Define

VerZ(@) =% when h=][hy
teT
where 7 (resp. k) is the image of g in G° (resp. the image of h in H®"). Show that if H
is cyclic of order 8 and G is a dihedral (resp. quaternion) group of order 8, then VerZ is
trivial if G is dibedral, and otherwise Verg is the unique non-trivial homomorphism which
has kernel the image of H in G.

. Let L/K be s finite extension of global fields. Define Cx = Jx /K" to be the idele class

group of K. Let K° be the maximal abelian extension of X in some algebraic closure
containining L. Two basic properties of the Artin map ¥ : Cx — Gal(K®/K) are that
the two following two diagrams commute:

O —%- Gal(L/L)

Normy,x l"ﬁbnb/,‘nb

Cx —% Gal(K*/K)

Cx —5 Gal(K™/K)
[} K/L Ver L/K
Cr —% Gal(L®/L)

in which respe xas is induced by restriction, ig,z i induced by the inclusion of X into L
and Verp/k is the transfer map.

Use this to show thai all dihedral and quaternion extensions of X arise from the following
construction. Let L/K be a quadratic separable extension, and let € : Cx — {%1}
be the unique surjective homomorphism corresponding to L via class field theory. Write
Gal(L/K) = {e, 0}, with ¢ of order 2. Let pq = {1, £v/—1} be the group of fourth roots
of unity in C*. A surjective homomorphism ¥ : Cp, — p4 is of dihedral (zesp. guaternion)
type if:

a x° =x"! when x° : Cp — 4 is defined by x° () = x(c(7)) for j € C1



b. The restriction x|c, of x to Ci via the map Cx — Oy, induced by including X into
L is trivial (in the dihedral case) or the character ez (in the quaternion case),

Let N be the extension of L which corresponds to the kernel of x via ‘class ficld theory . =

over L. Show that N/KX is & dihedral (resp. quaternion) extension.of degree 8 if x is of

dihedral (resp. quaternion) type, and that all such extensions arise from this construction

as L ranges over the quadratic Galois extensions of X. Which pairs (L, x) give rise to the

same N7 : .

3. The character x :-Cr = Jp/L* — u, then has local components Xy : L7 — ug4 for each

place v of L defined by X, (j») = X(ty(jy)) when s, : L; = Cy results from the inclusion of
L, into J;, at the place v followed by the projection J; — Cp/L.

8. Suppose X is & number field and that X and L have class number 1.. Show that there

are exact sequences .

(1.3) 1-0;-+][0s =G =1 and 1505~ ]]0s2Cx =1

where v and w range over all places of L and K, respectively, including_tle archimedean
places,/ Conclude from this that to specify & fmite order continuous homomo?p@

X : Cp = € it is.necessary and sufficient to_specify_contimuous. local characters

X» : O3 = C* which are trivial for almost all v such that I1, X, vanishes on 0%.

. Wi e notations of problem (3z), what conditions O the restrictions X &Te equiva-
lent to x being of dihedral or quaternion type? (Note that by the same reasoning, the
character € : Cx — {1} is determined by its restrictions to the multiplicative groups
Oy, of all places w of K, and that each such 0, embeds naturally into the product of
theO;associatedtoquerwinL.)' :

- Suppose X = Q and L = Q(+/5). Show that there is a quaternion character x:Cp =
#4 such that the x;, = x,|O} have the following properties. The character x/, is trivial
unless v is the unique place vs over 5 or one of the two first degree places vg and v},
over 41, The order of x;, i5 2 if v = v; and 4 if v = vy or v = v},. Finally, when
we use the natural inclusion X = Q — L to identify both 0Oy, and Oy, with Zg,
‘the characters Xug, 20d x’% are inverses of each other when we view them both as

characters of Z3,. '
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