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In this notes we describe how modular forms relate to sum of squares and elliptic curves.

1 The sum of squares problem

The sum of squares problem is the following: For fixed positive integers k and n, what can we say about
integer solutions (x1, . . . , xk) to the polynomial equation x2

1 + · · ·+x2
k = n? Of course, there are the classical

well-known results that classify the existence of such solutions for the case k = 2 and k = 3, and that positive
integers can be written as the sum of four squares (commonly credited to Fermat, Legendre, and Lagrange
respectively); all of these can be proven via elementary number theory. One can ask further questions:

(a) How many solutions are there to the sum of squares problem?
(b) How are the solutions distributed on the k-sphere of radius

√
n?

It turns out that these two questions can be partially answered via the theory of modular forms. Let us first
write out question (a) precisely. Let r(n, k) be the number of ways to represent n as the sum of k squares,
i.e.

r(n, k) := #{x ∈ Zk : n = x2
1 + · · ·+ x2

k}.

Then a combinatorial technique to determine r(n, k) is to write down a generating function

θ(τ, k) =

∞∑
n=0

r(n, k)qn, q = e2πiτ and τ ∈ H.

This function is holomorphic and satisfies θ(τ + 1, k) = θ(τ, k). By a combinatorial observation, we have the
crude bound r(n, k) ≤ 2knk, and θ(τ, k1)θ(τ, k2) = θ(τ, k1 + k2). In particular, θ(τ, k) = θ(τ, 1)k. Observe
that θ(τ, 1) is the classical theta function, and one can show [1, section 4.9], via the Poisson summation
formula, that

θ

(
− 1

4τ
, 1

)
=
√
−2iτ θ(τ, 1).

We now restrict ourselves to the case where k is even. Another computation using the above identity will
show that

θ

(
τ

4τ + 1
, k

)
= (4τ + 1)k/2θ(τ, k).

Hence θ satisfies

θ(γ(τ), k) = (cτ + d)k/2θ(τ, k), for γ ∈
〈[

1 1
0 1

]
,

[
1 0
4 1

]〉
= Γ1(4).

(By convention, c and d are the lower left and lower right entries of the matrix γ.)
To summarize the discussion above, one would say that θ(τ, k), for k even, is a modular form of weight

k with respect to Γ1(4). Hence, in order to try to compute r(n, k), one can try to understand more about
modular forms, in particular its dimension as a vector space, and how fast the Fourier coefficients grow.

In general, if k ∈ Z≥0 and Γ is a congruence subgroup of SL2(Z) (so

[
1 N
0 1

]
∈ Γ for some positive

integer N , which we assume to be smallest possible), consider a holomorphic function f : H−→C satisfying
weight-k invariance, i.e. f(γ(τ)) = (cτ + d)kf(τ) for γ ∈ Γ. Then f has a Fourier expansion

f(τ) =
∑
n

anq
n
N , qN = e2πiτ/N
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about the punctured unit disk. We can also consider, for any γ ∈ SL2(Z), the weight-k operator [γ]k defined
by f [γ]k(τ) := (cτ + d)−kf(γ(τ)). This admits a Fourier expansion as well as it is modular with respect
to the congruence subgroup γ−1Γγ. Such a function f as above is a modular form of weight k with respect
to Γ if f [γ]k extends holomorphically to zero in the unit disk for all γ ∈ SL2(Z), so the Fourier coefficient
aγ,n for f [γ]k is zero if n < 0. If furthermore aγ,0 = 0 for all γ ∈ SL2(Z), then we say f is a cusp form.
Also notice that, if k is odd and −I2 ∈ Γ, then we would have f(τ) = −f(τ), implying f ≡ 0. Hence when
discussing question (a) in the sum of squares problem we restrict ourselves to even k (the case for odd k can
be recovered from this by a finite sum, assuming a formula exists for even k).

We write the space of modular forms and cusp forms as Mk(Γ) and Sk(Γ) respectively. The explicit
dimension formulas for Mk(Γ) [1, chapter 3] implies that the space of modular forms is finite-dimensional.
Writing Ek(Γ) =Mk(Γ)/Sk(Γ) to be the space of Eisenstein series, we get a natural decomposition

Mk(Γ) = Sk(Γ)
⊕
Ek(Γ).

(In fact, the cusp forms and Eisenstein series are “orthogonal”: an inner product <,>Γ on Sk(Γ) that does
not extend to Mk(Γ), call the Petersson inner product, still makes sense if one of its entries is not a cusp
form.) This decomposition is useful as an explicit basis for Ek(Γ) can be written out for the important
congruence subgroups [1, chapter 4]. Although we cannot write out an explicit basis for Sk(Γ), we are
able to exhibit one using the theory of newforms [1, chapter 5], and we can reinterpret it as certain first
cohomology via simplicial cohomology or group cohomology [4, chapter 8].

Let us now return to question (a) of the sum of squares problem. It turns out we can use the theory of
modular forms to explicitly write out the formulas for r(n, k) for k = 2, 4, 6, 8, since a consequence of the
dimension formulas imply Sk/2(Γ1(4)) = {0} for these values of k, so Mk/2(Γ1(4)) admits a basis in terms
of Eisenstein series. For example, in case k = 4 one has dimCM2(Γ1(4)) = 2 with a basis of Eisenstein series

G2,2(τ) = −π
2

3

1 + 24

∞∑
n=1

 ∑
0 < d|n
d odd

d

 qn

 , G2,4(τ) = −π2

1 + 8

∞∑
n=1

 ∑
0 < d|n

46 |d

d

 qn

 .

Writing θ(k, 4) = 1 + 8q + · · · in terms of G2,2 and G2,4 would give us θ(τ, 4) = −π−2G2,4(τ) by equating
Fourier coefficients, so one has

r(n, 4) = 8
∑

0 < d|n
46 |d

d, for n ≥ 1.

Similar formulas can be achieved for r(n, 2) and r(n, 6) and r(n, 8) by the same method. For example, in
case r(n, 2) we have

r(n, 2) = 4
∑

0 < m|n
m odd

(−1)(m−1)/2,

and Fermat’s sum of two squares theorem tells us this equals zero if n has a prime factor p ≡ 3 (mod 4).
For the case k ≥ 10, we will be able to use the same methods to solve the sum of squares problem case

by case if we have an explicit basis for the space of cusp forms. We do not have this in general though.
Things are not so bad however, since we can get an asymptote in n by ignoring the cusp forms and doing
the same computation as above. This is a consequence of Hecke’s estimate that as n → ∞ the Fourier
coefficients of Eisenstein series dominate those of cusp forms. More precisely, for any congruence subgroup
Γ, the Fourier coefficients of cusps forms f ∈ Sk(Γ) satisfy |an(f)| ≤ O(nk/2) (via analytic estimates), and
those of Eisenstein series f ∈ Ek(Γ) satisfy |an(f)| = O(nk−1), (via elementary estimates on the coefficients
of Eisenstein series, which are generalized divisor functions up to factors of primitive Dirichlet characters).

Let us now move on to question (b) in the sum of squares problem, which asks how elements of the set
Xn = {x ∈ Zk : n = x2

1 + · · ·+ x2
k} are distributed on the sphere of radius

√
n (note that #Xn = r(n, k) by

definition). We are most interested in knowing if the solutions are equidistributed. Roughly speaking, this
means that one sees about the same amount of solutions anywhere on the sphere. More precisely, writing
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Sk to be the unit k-sphere, equidistribution means that, for every F ∈ C∞(Sk),

lim
n→∞

1

r(n, k)

∑
x∈Xn

F

(
x

|x|

)
=

∫
Sk

F.

We can easily show that this holds if k = 8κ is a positive multiple of eight by an application of Hecke’s estimate
(this assumption is used to avoid analytic difficulties). A way to attack it is using Weyl’s equidistribution
criterion, which states that it suffices to show

lim
n→∞

1

r(n, k)

∑
x∈Xn

P

(
x

|x|

)
= 0

with P a homogeneous harmonic polynomial on Rk of degree d > 0. The explicit Eisenstein basis in our case
implies that r(n, k) ≥ Ckn

4κ−1 for large enough n and some constant Ck > 0 depending on k. Also, it can
be shown analogously for the function θ(τ, k) that the following more general function

∞∑
n=0

rP (n, k)qn, rP (n, k) :=
∑
x∈Xn

P (x)

is a cusp form in S4κ+d(Γ1(4)) (if d = 0, this function is not a cusp form). Hecke’s estimate applies to give
rP (n, k) ≤ Cn(4κ+d)/2 for some other constant C > 0. By homogeneity of P and the various inequalities
above,

1

r(n, k)

∑
x∈Xn

P

(
x

|x|

)
≤ Cn(4κ+d)/2

Ckn4κ−1nd/2
, which tends to zero as n→∞.

Remark 1. Lagrange’s four-square theorem asserts Q(x) = x2
1 + · · ·+x2

k admits all positive integers if k ≥ 4,
and we have a complete list of integers not represented by two or three squares. A generalization of these facts
is the 15-theorem, which states that a positive definite quadratic form Q(x) with integer matrix admits all
positive integers if it admits 1, 2, 3, 5, 6, 7, 10, 14, 15. This theorem, among other observations, is immediately
deduced by Bhargava from his idea of escalations, after quite a bit of computation. Briefly speaking, the idea
of escalations reinterprets such Q(x) with a lattice L having integer inner products, and constructs finitely
many possible sequences of lattices L0 ( · · · ( Ll ⊂ L, with dimLd = d and l ∈ {4, 5}, such that Ll has
its points with norms of all positive integers. A generalization of the 15-theorem is the 290-theorem, which
states that a positive definite quadratic form Q(x) with integer coefficients admits all positive integers if
it admits (a subset of twenty-nine) positive integers up to 290. The proof of this uses a difficult extension
of escalations, together with a tighter variation of Hecke’s estimate on the Fourier coefficients of modular
forms, and computational power (lasting two weeks according to his talk last year).

2 Modular forms and elliptic curves

A complex elliptic curve E is the quotient C /Λ of the complex plane by a lattice Λ ∼= Z2. We denote its
N -torsion points as E[N ], which is isomorphic to (Z/NZ)2. On this torsion subgroup, we can also define a
bilinear form eN : E[N ] × E[N ]−→µN , also known as Weil pairing. Via the Weierstrass ℘-function of Λ,
this C /Λ is in bijection with the solution set of (℘′(z))2 = 4(℘(z))3 − g2(Λ)℘(z) − g3(Λ) of C2, where the
coefficients of g2 and g3 are constant multiples of Eisenstein series. More generally, an elliptic curve E over
an arbitrary field k is the solution set in an algebraic closure k of a cubic equation of Weierstrass form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ k

such that its discriminant is nonzero. If char(k) 6= 2, 3, then we can do admissible change of variables (that
fixes the infinity point and preserves Weierstrass form) to convert it into the form y2 = x3 + c2x + c3.
Contrary to the complex case, the N -torsion points E[N ] is not usually isomorphic to (Z/NZ)2, though this
is still true if char(k) does not divide N .
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We now discuss a relationship between modular forms and elliptic curves. For an elliptic curve E over
Q, one is naturally interested in the solution count as we reduce it over a prime p (where we need to reduce

it carefully). If Ẽ is the reduction of E modulo p, then we can define ap(E) = p+ 1−#Ẽ(Fp), where Ẽ(Fp)
denote the points of Ẽ defined in Fp, and in the counting of points we also include the infinity point. The

reduction modulo p of E does not necessarily yield an elliptic curve Ẽ as its discriminant might be zero
modulo p, and the conductor NE =

∏
primes p

fp of E is able to tell us this information since p divides NE if

and only if Ẽ is not an elliptic curve. The numbers ap(E) are related to modular forms as follows. Define

Γ1(N) :=

{[
a b
c d

]
∈ SL2(Z) :

[
a b
c d

]
≡
[
1 ∗
0 1

]
(mod N)

}
.

(This is a generalization of the group Γ1(4) in the previous section.) In modular forms there is the theory of
Hecke operators Tn : Sk(Γ1(N))−→Sk(Γ1(N)) for any positive integer n that interacts nicely with Fourier
coefficients, in the sense that we can write explicit formulas of how Tn acts on them. In particular, the
newforms mentioned in the previous section are cusp forms that satisfy a1(f) = 1, have Fourier coefficients
completely determined by those ap(f) with p prime, and are eigenforms for all Tn with eigenvalue an(f) (i.e.
Tn(f) = an(f)f). Denote Γ0(N) in the same way, except allowing the two 1’s in the definition of Γ1(N) to
be arbitrary integers (so Γ1(N) ⊂ Γ0(N) and Mk(Γ0(N)) ⊂Mk(Γ1(N))). The modularity theorem tells us
that for an elliptic curve E over Q, there exists a newform f ∈ S2(Γ0(NE)) such that ap(f) = ap(E) for all
primes p. Hence newforms are useful here as they parametrizes arithmetic information of elliptic curves.

We can reinterpret the modularity theorem of the previous paragraph in terms of L-functions. For a
modular form f =

∑∞
n=0 an(f)qn ∈Mk(Γ1(N)), we can define its L-function as L(s, f) :=

∑∞
n=1 an(f)n−s.

The Hecke estimate implies that L(s, f) converges absolutely for <(s) > k. If f is a newform inMk(Γ0(N)),
then because of the nice formulas its Fourier coefficients obey one has an Euler product expansion

L(s, f) =
∏
p

(1− ap(f)p−s + 1N (p)p1−2s)−1,

where 1N (p) is the trivial Dirichlet character modulo N that assigns 1 if p does not divide N , and assigns 0
otherwise. Furthermore, we have a functional equation for L(s, f) that implies it has an analytic continuation
to the complex plane. An analogous L-function can be defined for an elliptic curve E over Q with conductor
NE by

L(s, E) :=
∏
p

(1− ap(E)p−s + 1NE
(p)p1−2s)−1.

The modularity theorem rephrases as follows: For every elliptic curve E over Q with conductor NE , there
exists a newform f ∈ S2(Γ0(NE)) such that L(s, f) = L(s, E). In particular, the analytic continuation of
L(s, f) applies to L(s, E) (so the modularity theorem immediately implies the Hasse-Weil conjecture for
elliptic curves). Various other questions can be asked about this L-function. Of particular importance and
significance is the Birch-Swinnerton-Dyer conjecture, which asks if the order of vanishing of L(s, E) at s = 1
equals the rank of E(Q).

There is an important object that has not yet been mentioned: the modular curve. We will concentrate
on this object in the remainder of this report summary. For a congruence subgroup Γ, one can let it act on
the upper-half plane H and look at the quotient space Y (Γ) := Γ\H. The example Y (SL2(Z)) is represented
by the shaded area in the following well-known picture, where the sides are identified appropriately.

By adjoining the “cusps” to Y (Γ) (i.e. the set Q∪{∞} up to Γ-equivalence, necessarily finitely many) and
constructing appropriate charts, one compactifies Y (Γ) into a compact Riemann surface X(Γ) = Γ \ H∗,
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where we let H∗ = C∪Q∪{∞}. This X(Γ) is the modular curve for Γ. For example, the case Γ = SL2(Z)
has only one cusp, and X(Γ) is the sphere. Notice how this gives a geometric interpretation of the last
condition in the definition of modular forms: we want modular form to be holomorphic at the cusps, and
cusps forms are those vanishing at the cusps.

Define the space of automorphic forms Ak(Γ) in the same way as for Mk(Γ), by replacing the word
“holomorphic” with “meromorphic”. Thus, for all γ ∈ SL2(Z), the Fourier coefficients of an automorphic
form satisfy aγ,n = 0 for aγ,n < mγ and some mγ ∈ Z. ClearlyMk(Γ) ⊂ Ak(Γ). In fact Ak(Γ) = C(X(Γ))f ,
where f is a nonzero element of Ak(Γ) (exists except the degenerate case where k is odd and −I2 ∈ Γ) and
C(X(Γ)) is the field of meromorphic functions on X(Γ). Hence, with a suitable definition of div, one has

Mk(Γ) = {f0f ∈ Ak(Γ) : f0f = 0 or div(f0f) ≥ 0}
∼= {f0 ∈ C(X(Γ)) : f0 = 0 or div(f0) + div(f) ≥ 0}.

This is the key reinterpretation of Mk(Γ) which allows us to compute its dimension via Riemann-Roch
theorem. To compute the dimension of Sk(Γ) one replaces div(f) in the inequality above by div(f)−

∑
i εixi,

where xi are the cusp points and εi equals 1 or 1/2 accordingly if xi is regular or irregular.
Another important example of how modular curves arise in the study of elliptic curves is another version

of the modularity theorem (which we will call version XC): if E is a complex elliptic curve with rational
j-invariant, then there exists a surjective holomorphic function X(Γ0(N))−→E for some positive integer N .

We can reinterpret the uncompactified modular curve Y (Γ) by relating it with complex elliptic curves
as follow. It can be shown that Y (Γ0(N)) is in bijection with S(Γ0(N)), the isomorphism classes of [E,C],
where E = C /Λ is a complex elliptic curve and C is a cyclic subgroup of order N . The bijection can be
written down simply as Γτ ←→ [C /Λτ , 1/N ], where Λτ = Z ⊕ τZ. In particular, isomorphism classes of
elliptic curves are parametrized by SL2(Z)\H. Similarly, it can be shown that there is a bijection of Y (Γ1(N))
with S(Γ1(N)), the isomorphism classes of [E,P ], where P is a point of order N , by Γτ ←→ [C /Λτ , 1/N ].
Note that the isomorphism classes here are different from the previous case: here [E,P ] is isomorphic to
[E′, P ′] if there is an isomorphism E ∼= E′ that takes P to P ′, not just taking the cyclic group generated by
P to that generated by P ′. If we analogously define Γ(N) by letting ∗ = 0 in the definition of Γ1(N), then
there is a bijection of Y (Γ(N)) with S(Γ(N)), the isomorphism classes of [E, (P,Q)], where P,Q generates
E[N ] with Weil pairing eN (P,Q) = e2πi/N , by Γτ ←→ [C /Λτ , (1/N, τ/N)].

With the descriptions of Y (Γ) in case Γ ∈ {Γ0(N),Γ1(N)} as above, it allows us to define Hecke operators
on X(Γ) and S(Γ) respectively, compatible with the Hecke operators on modular forms. After some work
(background, with more equivalences of the modularity theorem in [1, chapters 6 to 8]) one can describe
Hecke operators Tp on the Picard group Pic0(X(Γ)alg) of algebraic analogs X(Γ)alg of the modular curve
X(Γ) and arrive at the Eichler-Shimura relation, allowing us to interpret Tp on Pic0(X(Γ)alg) using mod-p
Frobenius maps for primes p not dividing N .

Remark 2. The Eichler-Shimura relation is implicitly used to construct two important Galois representa-
tions ρE , ρf : GQ−→GL2(K), for elliptic curves E over Q and for weight-two newforms f with respect to
Γ0(N). Another version of the modularity theorem tells us that ρE is isomorphic to some ρf with more pre-
cise conditions. Wiles proved this version of modularity on semistable elliptic curves, after Ribet and Serre
had proven it implies version XC for N = 2. Assuming these hard results (or/and the more general modular-
ity theorem), this is enough to imply Fermat’s Last Theorem by constructing the Frey elliptic curve CF for
a solution to Fermat’s equation, which one can easily show not to exist via applying the Riemann-Hurwitz
formula to X(Γ0(2))−→CF after noticing that X(Γ0(2)) has genus zero by the dimension formulas.
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