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Abstract

Jacobi polynomials are an important class of orthogonal polynomials that includes examples like the
Chebyshev and Legendre polynomials. The purpose of this expository note is to flesh out two pictorial
appearances of these polynomials in physics and combinatorial number theory. We give a quick overview
of Jacobi polynomials, followed by applications in electrostatics and dessins d’enfants.

1 Some Facets of Jacobi Polynomials

In this section we will introduce the bare minimum on Jacobi polynomials needed to understand this talk.
A good reference on this is [4].

1.1 Chebyshev Polynomials

Let start with an example of Jacobi polynomials. Recall from high school calculus that one can expand
cos(nθ) as a polynomial in cos(θ). For example,

cos(2θ) = 2 cos2(θ)− 1,

cos(3θ) = 4 cos3(θ)− 3 cos(θ),

and more generally, using Euler’s formula on complex numbers,

cos(nθ) =

bn/2c∑
j=0

(
n

2j

)
(cos2(θ)− 1)j cosn−2j(θ).

By replacing cos(θ) with a variable, this gives us the Chebyshev polynomials:

Tn(x) =

bn/2c∑
j=0

(
n

2j

)
(x2 − 1)jxn−2j .

(There is a completely analogous function by expanding sin(nθ); we will omit this here.)
The Chebyshev polynomials have a number of properties, and the first two will be essential later.
• The zeroes of Tn are simple and lie in (−1, 1). In this case we can explicitly write them down:

cos
(1 + 2k)π

2n
, k = 0, . . . , n− 1.

Therefore, the non-endpoint critical points of Tn interlaces with the zeros and lies in (−1, 1). In fact,
they are

cos
kπ

n
, k = 1, . . . , n− 1.

• The polynomial Tn solves the Sturm-Liouville equation

(1− x2)y′′ − xy′ + n2y = 0,

and are orthogonal with respect to the weight (1− x2)−1/2.
• The Chebyshev polynomial Tn is the best degree n polynomial to interpolate a given function f .
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1.2 Legendre Polynomials

Let us give another example that appears in spherical harmonics. This is the Legendre polynomial, defined
as

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n.

For example,

P1(x) = x,

P2(x) =
1

2
(3x2 − 1),

P5(x) =
1

8
(63x5 − 70x3 + 15x).

The Legendre polynomials satisfy two similar properties with the Chebyshev polynomials, which will be
shared with all Jacobi polynomials.
• The zeros of Pn are simple and lies in (−1, 1).
• The polynomials Pn solves the Sturm-Liouville equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0,

and are orthogonal with respect to the weight 1.
• The Legendre polynomial Pn is the best degree n polynomial for numerical integration on an interval,

in the sense of Gaussian quadrature.

1.3 Jacobi Polynomials

Now we define the polynomials we want to look at in this talk.

Definition 1. Let α, β > −1 be half-integers. The Jacobi polynomials are defined by

Jα,βn (x) =
1

2nn!
(1− x)−α(1 + x)−β

dn

dxn
(
(1− x)α(1 + x)β(1− x2)n

)
.

(This is also known as the Rodrigues expansion of the Jacobi polynomial.)

It is not hard to check that:
• the Chebyshev polynomials Tn correspond to the case α = β = −1/2;
• the Legendre polynomials Pn correspond to the case α = β = 0.

As mentioned before, the Jacobi polynomials share two properties similar to the Chebyshev and Legendre
polynomials. We will simply take them on faith here; see [4] for a good treatment on Jacobi, and more
generally, orthogonal, polynomials.

Theorem 2 ([4, Theorem 3.3.1]). The zeroes of Jα,βn are real and distinct, and lies in (−1, 1). Therefore,
the non-endpoint critical points of Jα,βn interlaces with the zeros and lie in (−1, 1). �

Theorem 3 ([4, Theorems 4.2.1; 4.23.2]). The Jacobi polynomials satisfies the Sturm-Liouville equation

(1− x2)y′′ + (β − α− (α+ β + 2)x)y′ + n(n+ α+ β + 1)y = 0,

and are orthogonal with respect to the weight (1 − x)α(1 + x)β. (A second linearly independent solution to
the differental equation above can be explicitly written as a hypergeometric function.) �

Of course, once we have the definition of Jacobi polynomials as above, we can extend it to the complex
plane, and all half integers α and β. The downside is that Jα,βn may not be a polynomial anymore, and the
theorems above do not work unless α, β > −1. Nevertheless, we will still call them “Jacobi polynomials”.
This extension will be needed in the last section when we discuss dessin d’enfants.
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2 Electrostatics

This section aims to answer the following problem.

Problem. Consider “flatland physics”, i.e. physics on the 2-dimensional space. Arrange n + 2 equally
charged particles on a line, with the two end particles fixed. How can we arrange the particles in between so
that they are in electrostatic equilibrium?

2.1 Electrostatic Forces

The “flatland” Coulomb’s Law is not an inverse-square law, but rather just an inverse law:

F ∼ q1q2
r
.

Consequently, the “flatland” electrostatic energy obeys a logarithmic law.
The physical laws in “flatland” is actually related to the usual one we are familiar with. In our setting,

it is related as follow. Consider an infinite charged line l in 3-dimensional space, such that l has uniform
charge q and is perpendicular to the xy-plane. Without loss of generality, say l is the z-axis. Now consider
any point x not on the line. If we just consider these two things interacting with each other, we can reduce
this to a 2-dimensional problem. A picture of this is as shown below.

What is the net force acting on x? By symmetry, there is no net vertical force. To calculate the horizontal
force, pick a point p on the line and consider a small segment dp around it. If p is of height h relative to
x, and x is of distance r away from l, then the usual Coulomb’s Law tells us that the horizontal force p dh
exerts on x is

Fhor,p ∼
p dh

r2 + h2
r√

r2 + h2
.

Therefore the net horizontal force exerted by the line is

Fhor ∼
∫ ∞
−∞

q

r2 + h2
r√

r2 + h2
dh =

2q

r
,

which is precisely the inverse-law in “flatland” physics.

2.2 Arrangement of Charged Particles

We now seek to answer the Problem posed at the beginning of this section. It is perhaps surprising that the
solution to involves zeros of certain Jacobi polynomials! The exposition here loosely follows [2, 4].

Theorem 4. There exists a unique equilibrium position in the Problem stated above. In fact, all local
minimums of the energy functional are the same, and equal to the global minimum.
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Proof. Let p1, p2, . . . , pn−1, pn be the positions of the non-endpoint charged particles in increasing order.
Then, by “flatland” physics, we would like to show that, for each k 6= 1, n, there is a unique solution to the
equation

1

pk − 1
+

1

pk + 1
+
∑
j 6=k

1

pk − pj
= 0.

It suffices to show something stronger: that there is a unique solution set p2, . . . , pn−1 minimizing the energy

Ek(p2, . . . , pn−1) = − log |pk − 1| − log |pk + 1| −
∑
j 6=k

log |pk − pj |.

One we have this, Lemma 5 below (with α = β = 1) will show that the solution set to each Ek is actually
the same one, thus proving our theorem.

Let us now show the uniqueness of solution to Ek. Observe that a global minimum to Ek must exist by
continuity. Let p1, . . . , pn be such a solution set guaranteeing global minimum, and suppose p′1, . . . , p

′
n is a

set of solutions giving a local minimum. Write

si =
pi + p′i

2
.

Then, by the AM-GM inequality,

|sj − sk| ≥ |pj − pk|
1
2 |p′j − p′k|

1
2 and |sj ± 1| ≥ |1± pj |

1
2 |1± p′j |

1
2

with equality if and only if pj = p′j for all j. If equality does not hold, then we have produced a solution set
with lower minimum, a contradiction.

Lemma 5. Let x1, . . . , xn denote the n zeros of the Jacobi polynomial Jα,βn (x) in increasing order. Then,
for each xk, one has the relation

1

2

(
α+ 1

xk − 1
+

β + 1

xk + 1

)
+
∑
j 6=k

1

xk − xj
= 0.

Proof. Let us write the Jacobi polynomial Jα,βn (x) as f(x), and factorize it:

f(x) = c
∏
j

(x− xj).

Then one immediately observes that

f ′(x) =
∑
i

∏
j 6=i

(x− xj), f ′′(x) =
∑
i,l
i6=l

∏
j 6=i,l

(x− xj) = 2
∑
i<l
i 6=l

∏
j 6=i,l

(x− xj).

Thus

f(xk) = 0 and
f ′′(x)

f ′(x)
=
∑
j 6=k

2

xk − xj
.

Now, recall that f(x) satisfies the differential equation

(1− x2)f ′′ + (β − α− (α+ β + 2)x)f ′ + n(n+ α+ β + 1)f = 0.

Substituting x = xk and rearranging, we get

β − α− (α+ β + 2)x

1− x2
+
f ′′(x)

f ′(x)
= 0.

We get the proposition by simplifying the above expression.
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By forcing α+ 1 = β + 1 = 2, we get the solution to our Problem.

Corollary 6. Arrange n + 2 equally charged particles in the interval [−1, 1], with two fixed at −1 and 1.

Then the solution to the Problem of this section is the zeros of the Jacobi polynomial J
(1,1)
n (x). �

Remark. By using similar arguments, the results above can be generalized to the case of varied weights on

the end charges. In particular, the Chebyshev polynomial J
(− 1

2 ,−
1
2 )

n (x) = Tn(x) (resp. Legendre polynomial

J
(0,0)
n (x) = Pn(x)) will give the solution to the Problem if we had wanted the two end particles to have

one-quarter (resp. one-half) the charge instead.

Here is a natural follow-up question: what if we want the charged particles to each have different charges,
or lie on a different shape other than the line? This question has not been fully answered yet, and we don’t
have time to say much here; see the following three references for further reading.
• A generalization of the Chebyshev polynomial is given in [5], with limited application to varied charged

particles on a line. The methods used there are similar to the ones presented above.
• A relationship between charged particles on the circle and the so-called “paraorthogonal polynomials”

is discussed in [3].
• Finally, see [2] for a blanket overview of these kinds of problems.

3 Dessins d’Enfants

Let me now explain how I came across the electrostatics problem by way of combinatorial number theory.

3.1 Belyi Functions

Let P1 denote the complex projective line. In this section, we are mostly concerned with meromorphic
functions P1 −→ P1 ramified in at most three points. If we apply a Möbius transformation, we can assume
without loss of generality that the possible ramified points are 0, 1,∞.

Definition 7. A Belyi function is a meromorphic function P1 −→ P1 that is unramified outside {0, 1,∞}.

Theorem 8 (Belyi). A Belyi function can be chosen in such a way that it is defined over Q.

Remark. It should be noted that Belyi functions can be generalized by replacing the domain with a general
Riemann surface or algebraic curve. Also, a consequence of Belyi’s theorem tells us that there is a natural
Galois action on the set of Belyi functions, and in fact the action is transitive. One can find literature
on studying these Galois orbits, or constructing invariants for these Galois actions. We will not concern
ourselves with any of these here; see [1] for an exposition.

Belyi functions can be interpreted combinatorially as follow. Let f : P1 −→ P1 be a Belyi function, and
consider the preimage of the segment [0, 1]. If we color the preimages of 0 black and the preimages of 1
white, we will set up a correspondence between Belyi maps and bipartite connected graphs on P1. If we
write a Belyi function as

f(z) =
p(z)

r(z)
,

we immediately notice a few things.
• If a black vertex b has degree d, then it contributes a factor of (x− b)d to the polynomial p.
• Let us write

f(z)− 1 =
q(z)

r(z)
.

Then q records information about the white vertices just like how p records those for the black vertices.
• The number of faces we get corresponds to the number of preimages for ∞. A closed face (i.e. a

face excluding the outside face in a drawing of the graph) will always have 2s sides, and such a face
contributes s degrees to r(z).

Definition 9. The graph constructed above is called a dessin d’enfant.
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Example 10. Here is a simple example of a dessin d’enfant corresponding to the Belyi function f(z) = zn.

Example 11. The dessin d’enfant for the Chebyshev polynomial Tn is simply a straight line.

Notice that the vertices can be explicitly computed in this case; they are the critical points of Tn. If we want
the critical points to map to 0, 1 instead of −1, 1, compose the map Tn by z 7−→ (z + 1)/2 to get a Belyi
map that suits the definition.

Example 12. In general, it is hard to represent a dessin d’enfant correctly in its “geometric form”, and we
simply draw the lines in a convenient manner. For example, consider the dessin d’enfant below.

We can compute a Belyi function f(x) representing it (up to Möbius transformations) by letting the left-most
black vertex be 0, and the right-most white vertex be 1. Then one has

f(x) = cx3(x− γ) and f(x)− 1 = d(x− 1)2(x− α)(x− β),

giving

f(x) = −3

4
x3
(
x− 4

3

)
.

This tells us that the vertices should not be spaced out equally.

Remark. There are various combinatorial problems one can ask on dessin d’enfants.
• As mentioned earlier, a good understanding of Galois orbits and Galois invariants is desired.
• We can ask if Belyi functions with prescribed vertex and face degrees should exist. This is known as

the Hurwitz problem.
• Belyi-extending maps are a good class of maps that generates more Galois invariants and Belyi functions

from known ones. One can study such maps and hope to understand Belyi functions better.
We will not discuss any of them here; a literature search should give relevant articles on these things.

3.2 Example with Jacobi Polynomials

Let us now consider the following “double flower” (not drawn in its geometric form), where the white vertices
are not shown and on the midpoints of each edge.
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Without loss of generality, let’s say that the leftmost black vertex is −1, and the rightmost one is 1. Also
assume there are k + l +m edges, with m petals on the left side, and l petals on the right side. We wish to
find a Belyi function f that represents this. If we write

f(z) =
p(z)

r(z)
, f(z)− 1 =

q(z)

r(z)

we can immediately make a few observations.
• The degree of p is (2m+ 1) + (2l + 1) + 2(k − 1). In fact,

p(z) = (z + 1)2m+1(z − 1)2l+1P (z)2,

where P is a degree k − 1 polynomial.
• The degree of q is 2(m+ l + k), and

q(z) = Q(z)2.

• The degree of r is m+ l.
All these implies that, in order to construct f , we need to find P,Q, r as above satisfying

(z + 1)2m+1(z − 1)2l+1P (z)2 −Q(z)2 = R(z).

We now see how Jacobi polynomials are related to double flowers via this equation. Recall that we can
formally extend the definition of Jacobi polynomials to all half integers α, β, though the extended functions
may not be polynomials.

Proposition 13 ([1, Proposition 2.5.9]). The black vertices of the double flower corresponds to the zeros of

J
(l+ 1

2 ,m+ 1
2 )

k−1 (z), and the white vertices corresponds to the zeros of J
(−l− 1

2 ,−m−
1
2 )

k+l+m (z).

Proof. Write

y1(z) = J
(−l− 1

2 ,−m−
1
2 )

k+l+m (z) and y2 =

(
z + 1

2

)m+ 1
2
(
z − 1

2

)l+ 1
2

J
(l+ 1

2 ,m+ 1
2 )

k−1 (z).

Using the notation above, we want

Q(z) = y1(z) and (z + 1)m+ 1
2 (z − 1)l+

1
2P (z) = y2(z).

A computation reveals the following:
• y1 can be expanded into a formal Laurent series in z−1 using the generalized binomial theorem;
• y21 is actually a polynomial in z;
• y2 is also a polynomial in z.

Also write L to be the formal differential operator for y1:

L = (1− z2)
d2

dz2
+ (−m+ l − (−m− l + 1)z)

d

dz
+ (k + l +m)k.

Another computation reveals that
L(y1) = L(y2) = 0.

Now, a third computation tells us that, if we have a Laurent series

y(z) = Cdz
d + Cd−1z

d−1 + · · ·

in z−1, then
L(y) = (k + l +m− d)(d+ k)Cdz

d +O(zd−1).

Thus L(y) = 0 implies that d = k + l +m or d = −k. By the definition of Jacobi polynomials, one observes
that y2 − y1 is of degree at most k + l +m− 1. In other words,

y2 − y1 = o(zk+l+m),
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and this forces y2 − y1 ∼ z−k. Therefore

y22 − y21 = (y2 − y1)(y2 + y1) ∼ zl+m,

and since y22 and y21 are both polynomials, this implies

y22 − y21 = r(z)

for some degree l +m polynomial r. This is precisely what we wanted.

As a final comment, let us notice that in the degenerate case l = m = 0 this reduces to the Chebyshev
polynomial case (check that the critical values and zeros of the relevant polynomials coincide with one
another).
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