Adelic class groups via two quick examples

Yao-Rui

In this brief expository note we explain what the class groups of the linear algebraic groups GL_n and O_f are. (Here O_f is the orthogonal group of a classically integral quadratic form.) We will assume some familiarity with adeles and ideles, and strong approximation on algebraic groups.

Recurring symbols in adelic formulation

Symbol	Meaning
K	Global field (i.e. number field or function field)
\mathcal{O}_K	Ring of integers of K
v	Place (also called valuation or prime) of K
$v \nmid \infty$	v is a finite place (also called nonarchimedean valuation/prime)
$v \infty$	v is an infinite place (also called archimedean valuation/prime)
K_v	Completion of K with respect to v
${\mathcal O}_v$	Elements $x \in K_v$ with $ x _v \leq 1$
\mathbb{A}_{K}	Ring of adeles of K
S	Finite set of places of K (usually just the archimedean ones)
$\mathbb{A}_{K,S}$	Subring of \mathbb{A}_K avoiding the places in S
$\mathbb{A}_{K,S}$ \mathbb{A}_{K}^{S}	Ring of S -adeles of K
$\mathbb{A}_{K,f}$	Ring of finite adeles of K
$\mathbb{A}_{K,\infty}$	Infinite part of \mathbb{A}_K
$\mathbb{A}_{K,\infty} \ \mathbb{A}^\infty_K$	Ring of ∞ -adeles of K
$\mathbb{A}_{K}^{\overleftarrow{\times}}$	Ring of ideles of K

1 The general linear group

Let K be a number field. Then one can define its *class group* to be the group I_K of fractional ideals modulo the group P_K of principal ideals of K. In adelic formulation, this can be written as

$$Cl(K) := \frac{\mathbb{A}_{K,f}^{\times}}{K^{\times} \prod_{v \nmid \infty} \mathcal{O}_v^{\times}} = (\mathbb{A}_K^{\infty})^{\times} \setminus \mathbb{A}_K^{\times} / K^{\times},$$

which is precisely the double coset for GL_1 in the previous section. A way to see that the two definitions agree is to consider the surjective homomorphism

$$\begin{array}{l} A_{K,f}^{\times} \longrightarrow I_K/P_K \\ (\alpha_v) \longmapsto \prod_{v \nmid \infty} v^{\operatorname{ord}_v(\alpha_v)} \end{array}$$

which has kernel $K^{\times} \prod_{v \nmid \infty} \mathcal{O}_v^{\times}$. It is well-known that the class group of K is finite. More generally, we will define class groups for linear algebraic groups in the next section.

Let us concentrate on the example GL_n for now. Then its class group is defined to be the set of double cosets

$$Cl(\operatorname{GL}_n(K)) := \operatorname{GL}_n(\mathbb{A}_K^\infty) \setminus \operatorname{GL}_n(\mathbb{A}_K) / \operatorname{GL}_n(K).$$

Example 1. Here is a trivial example. Let $K = \mathbb{Q}$. Then, as

$$\mathbb{A}^{\times}_{\mathbb{Q}} = \mathbb{Q}^{\times}(\hat{\mathbb{Z}}^{\times} \times \mathbb{R}^{\times}_{>0}),$$

one easily sees that $Cl(\operatorname{GL}_n(K)) = 1$. There is a similar decomposition of $\mathbb{A}_{\mathbb{K}}^{\times}$ by modding out units, but this does not help in computing class groups; see the theorem directly below instead.

Notice that $Cl(GL_1(K)) = Cl(K)$ by definition.

Theorem 2. $Cl(GL_n(K)) = Cl(K)$.

Proof. Let $G = GL_n$, and consider the determinant map det : $G \longrightarrow GL_1$. Then one observes that

$$\det(G(\mathbb{A}_K)) = \mathbb{A}_K^{\times}, \qquad \det(G(\mathbb{A}_K^{\infty})) = (\mathbb{A}_K^{\infty})^{\times}, \qquad \det(G(K)) = K^{\times}.$$

Hence there is an induced map

$$\det: G(\mathbb{A}_K^{\infty}) \setminus G(\mathbb{A}_K) / G(K) \longrightarrow (\mathbb{A}_K^{\infty})^{\times} \setminus \mathbb{A}_K^{\times} / K^{\times}.$$

This map is surjective, so it remains to show injectivity. Suppose

$$(\mathbb{A}_K^{\infty})^{\times} \det(g) K^{\times} = (\mathbb{A}_K^{\infty})^{\times} \det(h) K^{\times}.$$

We need to show that $G(\mathbb{A}_K^{\infty})gG(K) = G(\mathbb{A}_K^{\infty})hG(K)$. By assumption

$$\det(g) = x \det(h) y$$

for some $x \in (\mathbb{A}_K^{\infty})^{\times}$ and $y \in K^{\times}$. Picking $a \in G(\mathbb{A}_K^{\infty})$ and $b \in G(K)$ such that $\det(a) = x$ and $\det(b) = y$, one gets

$$\det(g) = \det(ahb).$$

It suffices to show g and abb define the same double coset in $G(\mathbb{A}_K^{\infty}) \setminus G(\mathbb{A}_K)/G(K)$. Writing t = abb, observe that

$$s := t^{-1}g \in H(\mathbb{A}_K),$$

where H is the subgroup SL_n of G. Since $U := t^{-1}H(\mathbb{A}_K^{\infty})t$ is an open subgroup of $H(\mathbb{A}_K)$, by strong approximation

$$Us \cap H(A_{K,\infty})H(K) \neq \emptyset$$

Since $H(A_{K,\infty}) \subset U$, this gives the existence of $u \in H(\mathbb{A}_K^\infty)$ and $v \in H(K)$ such that

$$t^{-1}uts = v.$$

Rewriting, one gets $g = u^{-1}tv$, as desired.

Remark. In the proof above we made use of strong approximation for SL_n . In fact, strong approximation does not hold for GL_n ! See [3] for two explanations of this.

Recall a *lattice* is a finitely-generated \mathcal{O}_K -module in K^n containing a K-basis of K^n . A lattice in K^n is always free over K, but it might not be free over \mathcal{O}_K . However, by the structure theory of finitely generated modules over a PID, a lattice in K_v^{\times} is always free for any finite place v. We assume the following classical result about the local behavior of lattices.

Theorem 3. Let L be a lattice in $V = K^n$. If v is a finite place of K, write $L_v := L \otimes_{\mathcal{O}_K} \mathcal{O}_v$.

- 1. A lattice is uniquely determined by its localizations, i.e $L = \bigcap_{v \nmid \infty} (V \cap L_v)$.
- 2. If M is another lattice, then $L_v = M_v$ for almost all finite v.
- 3. For every v, let $N_v \subset V \otimes_K K_v$ be local lattices. If $N_v = L_v$ for almost all finite v, then there exists a unique lattice $M \subset V$ such that $M_v = N_v$ for all finite v.

Proof. See [2, Theorem 1.15].

We now show that the class group of $GL_n(K)$ (which is the class group of K by above) parametrizes lattices in K^n . This gives a geometric interpretation of the class group of a number field.

Corollary 4. $Cl(GL_n(K))$ is in one to one correspondence with the set of isomorphism classes of lattices in K^n .

Proof. Let \mathcal{L} be the set of all lattices. Then the previous theorem defines an action of $\operatorname{GL}_n(\mathbb{A}_K)$ on \mathcal{L} as follows. If $g = (g_v) \in \operatorname{GL}_n(\mathbb{A}_K)$ and $L \in \mathcal{L}$, then $g_v \in \operatorname{GL}_n(\mathcal{O}_v)$ and $L_v = \mathcal{O}_v^n$ for almost all finite places v, implying $g_v L_v = L_v$. One then defines gL to be the unique lattice M such that $M_v = g_v L_v$ for all finite places v.

Let us now fix $L = \mathcal{O}^n$. If M is another lattice in K^n , then for all finite v we can write $M_v = g_v(L_v)$ for some $g_v \in \operatorname{GL}_n(\mathcal{O}_v)$. Since $M_v = L_v$ for almost all finite v, there exists $g \in GL(\mathbb{A}_K)$ such that M = g(L). (Notice we are using the previous theorem here.) Therefore the action defined in the previous paragraph is transitive. As the stabilizer of L is $\operatorname{GL}_n(\mathbb{A}_K^\infty)$, there is a bijection

$$\operatorname{GL}_n(\mathbb{A}_K^\infty) \setminus \operatorname{GL}_n(A_K) \longleftrightarrow \mathcal{L}_n(A_K)$$

implying $Cl(\operatorname{GL}_n(K))$ is in bijection with $\mathcal{L}/\operatorname{GL}_n(K)$, the isomorphism classes of lattices in K^n .

One can look at [2, Section 8.1], or sieve it out from the arguments in this section, for various ways to determine if a lattice in K^n is free over \mathcal{O}_K .

Remark. Strong approximation gives us a similar relationship between special linear groups and unimodular lattices; in particular for SL_2 one has

$$\operatorname{SL}_2(\mathbb{Z}) \setminus \operatorname{SL}_2(\mathbb{A}_{\mathbb{Q}}) / \operatorname{SL}_2(\mathbb{Q}) = \operatorname{SL}_2(\mathbb{R}) / \operatorname{SL}_2(\mathbb{Z});$$

this is quotient has finite Haar volume and parametrizes unimodular lattices.

2 Some general theorems

Recall our convention that a linear algebraic group is an affine algebraic group with a fixed embedding into GL_n for some n. In general the class group of a linear algebraic group is defined just as in the case of GL_n .

Definition 5. Let G be a linear algebraic group. Then its *class group* is defined to be

$$Cl(G) := G(\mathbb{A}_K^{\infty}) \setminus G(\mathbb{A}_K) / G(K).$$

Theorem 6. The class group of a linear algebraic group is always finite.

Proof. See [2, Theorem 5.1].

Remark. In general the class group of an arbitrary algebraic group is not always finite; see [1, Example 1.5].

One can ask if it is possible to bound class groups via smaller subgroups. There are various results of this form in [2], and we record two of them here. Recall that G satisfies absolute strong approximation if the embedding $G(K) \longrightarrow \mathbb{A}_{K,f}$ is dense (strong approximation is when $\mathbb{A}_{K,f}$ is replaced by some $\mathbb{A}_{K,S}$; see [2, Chapter 5] for details).

Proposition 7. Let G be a semidirect product of H and N, where N is a normal subgroup of G (and everything is defined over K). If N satisfies absolute strong approximation, then $Cl(G) \leq Cl(H)$.

Proof. See [2, Proposition 5.4].

Proposition 8. Let G be a reductive group, and let P be a parabolic K-subgroup of G. Then $Cl(G) \leq Cl(P)$.

Proof. See [2, Theorem 8.11].

The main purpose of this section is to understand the following statement, which is a special case of Proposition 7 above.

Proposition 9. The class group of a linear algebraic group G with absolute strong approximation has cardinality 1.

Proof. Since G satisfies absolute strong approximation, $G(\mathbb{A}_{K,\infty})G_K$ is dense in $G(\mathbb{A}_K)$. Therefore the open set $G(\mathbb{A}_K^{\infty})x$ intersects $G(\mathbb{A}_{K,\infty})G_K$ nontrivially for any $y \in G(\mathbb{A}_K)$, and consequently

$$G(\mathbb{A}_K) = G(\mathbb{A}_K^\infty)G(\mathbb{A}_{K,\infty})G_K = G(\mathbb{A}_{K,\infty})G_K$$

where the second equality is because $G(\mathbb{A}_{K,\infty}) \subset G(\mathbb{A}_{K}^{\infty})$. This implies $G(\mathbb{A}_{K})$ has exactly one double coset, so Cl(G) = 1.

Corollary 10. $Cl(SL_n) = 1$.

Proof. SL_n satisfies absolute strong approximation.

3 The orthogonal group

Let $G \subset \operatorname{GL}_n$ be a linear algebraic group acting on an affine *m*-dimensional variety X. If x and y lie in the same $G(\mathcal{O}_K)$ -orbit of $X(\mathcal{O}_K)$, then they clearly lie in the same G(K)-orbit of X(K), and $G(\mathcal{O}_v)$ -orbit of $G(K_v)$, for all finite place v. A naive local-global problem we can ask if the following: does the converse always hold? One will expect that it usually does not hold, and consequently ask for a measurement of the failure of this local-global problem. We make all these ideas concrete via the following example/motivation.

Example/Motivation 11 (Quadratic forms). Let f be a classically integral quadratic form over \mathbb{Q} , so

$$f = \sum_{i} a_{ii} X_i^2 + \sum_{j \neq k} 2a_{jk} X_j X_k, \qquad a_{ii}, a_{jk} \in \mathbb{Z}.$$

Given such a quadratic form one can associate to it the symmetric matrix $A_f = (a_{ij})$. Define the class $\operatorname{cl}(f)$ of f to be the collection of all classically integral quadratic forms f' that are equivalent over \mathbb{Z} , i.e. such that $g^t fg = f'$ for some $g \in \operatorname{GL}_2(\mathbb{Z})$, and define the genus $\operatorname{gen}(f)$ to be the collection of all classically integral quadratic forms f' such that they are equivalent over \mathbb{Q} and \mathbb{Z}_p for all primes p (but not necessarily over \mathbb{Z}). Clearly

$$\operatorname{gen}(f) = \bigsqcup_{i \in I_f} \operatorname{cl}(f_i),$$

where f_i is a set of representatives in the genus of f. We define the number of classes c(f) of f to be the cardinality of I_f .

In general $c(f) \neq 1$ by considering the quadratic form $f = 5x^2 + 11y^2$. This is because the quadratic form

$$f' = x^2 + 55y^2$$

lies in the same genus and in a different class of f. To see this, consider

$$g_1 = \begin{bmatrix} 1/4 & -11/4 \\ 1/4 & 5/4 \end{bmatrix}, \qquad g_2 = \begin{bmatrix} 1/7 & -22/7 \\ 2/7 & 5/7 \end{bmatrix}.$$

Then $g_1^t f g_1 = f'$ and $g_2^t f g_2 = f'$. Since $g_1 \in \mathrm{GL}_2(\mathbb{Z}_p)$ for all $p \neq 2$ and $g_2 \in \mathrm{GL}_2(\mathbb{Z}_p)$, we see that f and f' are in the same genus. However, a direct computation shows that there does not exist $g \in \mathrm{GL}_2(\mathbb{Z})$ such that $g^t f g = f'$, so they cannot be in the same class.

We recall that there is a brute-force way to determine the number of classes of a binary quadratic form f over \mathbb{Q} . Namely, write down all the classes forms equivalent to f under $\mathrm{SL}_2(\mathbb{Z})$ (which is bounded by the class number of $\mathbb{Q}[\sqrt{\mathrm{disc}(f)}]$), identify those equivalent under $\mathrm{GL}_2(\mathbb{Z})$, and check pairwise if they are equivalent under \mathbb{Q} and \mathbb{Z}_p . Using this method, one can show that c(f) = 2 for the form $f = 5x^2 + 11y^2$ in the previous paragraph. For a general quadratic form f, we will compute c(f) below as the class group of the orthogonal group of f.

We now generalize all the definitions in the above example/motivation.

Definition 12. Let Let $G \subset GL_n$ be a linear algebraic group acting on an affine *m*-dimensional variety X, and let $x \in X(\mathcal{O}_K)$.

- The genus gen(x) of x is the collection of all $y \in X(\mathcal{O}_K)$ such that $y = g_K x$ for some $g_K \in G(K)$, and $y = g_v x$ for some $g_v \in G(\mathcal{O}_v)$ for all finite places v.
- The class cl(x) of x is the $G(\mathcal{O}_K)$ -orbit of x.
- If one writes

$$gen(x) = \bigsqcup_{i \in I_x} cl(f_x)$$

for some set of representatives f_x in the genus of x, then $f_G(x)$ is defined to be the cardinality of I_x .

Theorem 13. Let $G_x = \{g \in G : gx = x\}$. Then $f_G(x)$ is the number of double cosets $G_x(\mathbb{A}_K^{\infty})gG_x(K)$ of $G_x(\mathbb{A}_K)$ which are contained in $G(\mathbb{A}_K^{\infty})G(K)$. In particular, $f_G(x)$ is finite.

Proof sketch. Let \eth be the quotient set obtained from gen(x) by identifying elements belonging to the same class. We will construct the bijection between \eth and the set M of double cosets $G_x(\mathbb{A}_K^{\infty})gG_x(K)$ of $G_x(\mathbb{A}_K)$ contained in $G(\mathbb{A}_K^{\infty})G(K)$, and leave the verification to the reader (see [2, Theorem 8.2]). Let $\overline{g} = G_x(\mathbb{A}_K^{\infty})gG_x(K) \in M$, and write $g = g_{\infty}g_K$ with $g_{\infty} \in G(\mathbb{A}_K^{\infty})$ and $g_K \in G(K)$. Defining $y_g := g_K x$, the bijection $\theta: M \longrightarrow \eth$ is given by $\theta(\overline{g}) = y_g$.

Corollary 14. If f is a classically integral quadratic form over \mathcal{O}_K , then $c(f) = Cl(O_f)$, where

$$O_f = \{g \in \mathrm{GL}_n : g^t A_f g = A_f\}.$$

Proof. Let $X \subset \mathbb{A}^{n^2}$ be the variety of $n \times n$ symmetric matrices, and consider the action of $G = \operatorname{GL}_n$ by $g(x) = g^t x g$. Clearly $G_f = O_f$. If we can show that $O_f(\mathbb{A}_K) \subset G(\mathbb{A}_K^{\infty})G(K)$, then we are done by the theorem above.

For each finite place v, clearly $G(\mathcal{O}_v)$ contains a matrix with determinant -1, so any element $t \in O_f(\mathbb{A}_K)$ has $st \in \mathrm{SL}_n(\mathbb{A}_K)$ for a suitable element $s \in G(\mathbb{A}_K^\infty)$. But we know that $Cl(\mathrm{SL}_n(K)) = 1$ as SL_n satisfies absolute strong approximation, so $st = s_\infty s_K$ for some $s_\infty \in \mathrm{SL}_n(\mathbb{A}_K^\infty)$ and $s_K \in \mathrm{SL}_n(K)$. In particular,

$$t = s^{-1} s_{\infty} s_K \in G(\mathbb{A}_K^{\infty}) G(K),$$

as desired.

Remark. The above corollary agrees with the philosophy that local-global classification problems are related to the class group, since they are the analog of first cohomology in geometry.

References

- [1] Brian Conrad, Notes on finiteness of class numbers for algebraic groups.
- [2] Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory. Academic Press, 1993.
- [3] Andrei Rapinchuk, Strong approximation for algebraic groups. MSRI Publications (2013), 61: 269–298.