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In this brief expository note we explain what the class groups of the linear algebraic groups GLn and
Of are. (Here Of is the orthogonal group of a classically integral quadratic form.) We will assume some
familiarity with adeles and ideles, and strong approximation on algebraic groups.

Recurring symbols in adelic formulation

Symbol Meaning
K Global field (i.e. number field or function field)
OK Ring of integers of K
v Place (also called valuation or prime) of K

v -∞ v is a finite place (also called nonarchimedean valuation/prime)
v|∞ v is an infinite place (also called archimedean valuation/prime)
Kv Completion of K with respect to v
Ov Elements x ∈ Kv with |x|v ≤ 1
AK Ring of adeles of K
S Finite set of places of K (usually just the archimedean ones)

AK,S Subring of AK avoiding the places in S

ASK Ring of S-adeles of K
AK,f Ring of finite adeles of K
AK,∞ Infinite part of AK
A∞K Ring of ∞-adeles of K
A×K Ring of ideles of K

1 The general linear group

Let K be a number field. Then one can define its class group to be the group IK of fractional ideals modulo
the group PK of principal ideals of K. In adelic formulation, this can be written as

Cl(K) :=
A×K,f

K×
∏
v-∞O

×
v

= (A∞K )× \ A×K /K
×,

which is precisely the double coset for GL1 in the previous section. A way to see that the two definitions
agree is to consider the surjective homomorphism

A×K,f −→ IK/PK

(αv) 7−→
∏
v-∞

vordv(αv)

which has kernel K×
∏
v-∞O×v . It is well-known that the class group of K is finite. More generally, we will

define class groups for linear algebraic groups in the next section.
Let us concentrate on the example GLn for now. Then its class group is defined to be the set of double

cosets
Cl(GLn(K)) := GLn(A∞K ) \GLn(AK)/GLn(K).
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Example 1. Here is a trivial example. Let K = Q. Then, as

A×Q = Q×(Ẑ× × R×>0),

one easily sees that Cl(GLn(K)) = 1. There is a similar decomposition of A×K by modding out units, but
this does not help in computing class groups; see the theorem directly below instead.

Notice that Cl(GL1(K)) = Cl(K) by definition.

Theorem 2. Cl(GLn(K)) = Cl(K).

Proof. Let G = GLn, and consider the determinant map det : G −→ GL1. Then one observes that

det(G(AK)) = A×K , det(G(A∞K )) = (A∞K )×, det(G(K)) = K×.

Hence there is an induced map

det : G(A∞K ) \G(AK)/G(K) −→ (A∞K )× \ A×K /K
×.

This map is surjective, so it remains to show injectivity. Suppose

(A∞K )× det(g)K× = (A∞K )× det(h)K×.

We need to show that G(A∞K )gG(K) = G(A∞K )hG(K). By assumption

det(g) = x det(h)y

for some x ∈ (A∞K )× and y ∈ K×. Picking a ∈ G(A∞K ) and b ∈ G(K) such that det(a) = x and det(b) = y,
one gets

det(g) = det(ahb).

It suffices to show g and ahb define the same double coset in G(A∞K ) \ G(AK)/G(K). Writing t = ahb,
observe that

s := t−1g ∈ H(AK),

where H is the subgroup SLn of G. Since U := t−1H(A∞K )t is an open subgroup of H(AK), by strong
approximation

Us ∩H(AK,∞)H(K) 6= ∅.

Since H(AK,∞) ⊂ U , this gives the existence of u ∈ H(A∞K ) and v ∈ H(K) such that

t−1uts = v.

Rewriting, one gets g = u−1tv, as desired.

Remark. In the proof above we made use of strong approximation for SLn. In fact, strong approximation
does not hold for GLn! See [3] for two explanations of this.

Recall a lattice is a finitely-generated OK-module in Kn containing a K-basis of Kn. A lattice in Kn is
always free over K, but it might not be free over OK . However, by the structure theory of finitely generated
modules over a PID, a lattice in K×v is always free for any finite place v. We assume the following classical
result about the local behavior of lattices.

Theorem 3. Let L be a lattice in V = Kn. If v is a finite place of K, write Lv := L⊗OK
Ov.

1. A lattice is uniquely determined by its localizations, i.e L =
⋂
v-∞(V ∩ Lv).

2. If M is another lattice, then Lv = Mv for almost all finite v.

3. For every v, let Nv ⊂ V ⊗K Kv be local lattices. If Nv = Lv for almost all finite v, then there exists a
unique lattice M ⊂ V such that Mv = Nv for all finite v.
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Proof. See [2, Theorem 1.15].

We now show that the class group of GLn(K) (which is the class group of K by above) parametrizes
lattices in Kn. This gives a geometric interpretation of the class group of a number field.

Corollary 4. Cl(GLn(K)) is in one to one correspondence with the set of isomorphism classes of lattices
in Kn.

Proof. Let L be the set of all lattices. Then the previous theorem defines an action of GLn(AK) on L as
follows. If g = (gv) ∈ GLn(AK) and L ∈ L, then gv ∈ GLn(Ov) and Lv = Onv for almost all finite places
v, implying gvLv = Lv. One then defines gL to be the unique lattice M such that Mv = gvLv for all finite
places v.

Let us now fix L = On. If M is another lattice in Kn, then for all finite v we can write Mv = gv(Lv) for
some gv ∈ GLn(Ov). Since Mv = Lv for almost all finite v, there exists g ∈ GL(AK) such that M = g(L).
(Notice we are using the previous theorem here.) Therefore the action defined in the previous paragraph is
transitive. As the stabilizer of L is GLn(A∞K ), there is a bijection

GLn(A∞K ) \GLn(AK)←→ L,

implying Cl(GLn(K)) is in bijection with L/GLn(K), the isomorphism classes of lattices in Kn.

One can look at [2, Section 8.1], or sieve it out from the arguments in this section, for various ways to
determine if a lattice in Kn is free over OK .

Remark. Strong approximation gives us a similar relationship between special linear groups and unimodular
lattices; in particular for SL2 one has

SL2(Ẑ) \ SL2(AQ)/ SL2(Q) = SL2(R)/SL2(Z);

this is quotient has finite Haar volume and parametrizes unimodular lattices.

2 Some general theorems

Recall our convention that a linear algebraic group is an affine algebraic group with a fixed embedding into
GLn for some n. In general the class group of a linear algebraic group is defined just as in the case of GLn.

Definition 5. Let G be a linear algebraic group. Then its class group is defined to be

Cl(G) := G(A∞K ) \G(AK)/G(K).

Theorem 6. The class group of a linear algebraic group is always finite.

Proof. See [2, Theorem 5.1].

Remark. In general the class group of an arbitrary algebraic group is not always finite; see [1, Example 1.5].

One can ask if it is possible to bound class groups via smaller subgroups. There are various results of
this form in [2], and we record two of them here. Recall that G satisfies absolute strong approximation if
the embedding G(K) −→ AK,f is dense (strong approximation is when AK,f is replaced by some AK,S ; see
[2, Chapter 5] for details).

Proposition 7. Let G be a semidirect product of H and N , where N is a normal subgroup of G (and
everything is defined over K). If N satisfies absolute strong approximation, then Cl(G) ≤ Cl(H).

Proof. See [2, Proposition 5.4].

Proposition 8. Let G be a reductive group, and let P be a parabolic K-subgroup of G. Then Cl(G) ≤ Cl(P ).

Proof. See [2, Theorem 8.11].
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The main purpose of this section is to understand the following statement, which is a special case of
Proposition 7 above.

Proposition 9. The class group of a linear algebraic group G with absolute strong approximation has
cardinality 1.

Proof. Since G satisfies absolute strong approximation, G(AK,∞)GK is dense in G(AK). Therefore the open
set G(A∞K )x intersects G(AK,∞)GK nontrivially for any y ∈ G(AK), and consequently

G(AK) = G(A∞K )G(AK,∞)GK = G(AK,∞)GK ,

where the second equality is because G(AK,∞) ⊂ G(A∞K ). This implies G(AK) has exactly one double coset,
so Cl(G) = 1.

Corollary 10. Cl(SLn) = 1.

Proof. SLn satisfies absolute strong approximation.

3 The orthogonal group

Let G ⊂ GLn be a linear algebraic group acting on an affine m-dimensional variety X. If x and y lie in
the same G(OK)-orbit of X(OK), then they clearly lie in the same G(K)-orbit of X(K), and G(Ov)-orbit
of G(Kv), for all finite place v. A naive local-global problem we can ask if the following: does the converse
always hold? One will expect that it usually does not hold, and consequently ask for a measurement of the
failure of this local-global problem. We make all these ideas concrete via the following example/motivation.

Example/Motivation 11 (Quadratic forms). Let f be a classically integral quadratic form over Q, so

f =
∑
i

aiiX
2
i +

∑
j 6=k

2ajkXjXk, aii, ajk ∈ Z.

Given such a quadratic form one can associate to it the symmetric matrix Af = (aij). Define the class cl(f)
of f to be the collection of all classically integral quadratic forms f ′ that are equivalent over Z, i.e. such that
gtfg = f ′ for some g ∈ GL2(Z), and define the genus gen(f) to be the collection of all classically integral
quadratic forms f ′ such that they are equivalent over Q and Zp for all primes p (but not necessarily over Z).
Clearly

gen(f) =
⊔
i∈If

cl(fi),

where fi is a set of representatives in the genus of f . We define the number of classes c(f) of f to be the
cardinality of If .

In general c(f) 6= 1 by considering the quadratic form f = 5x2 + 11y2. This is because the quadratic
form

f ′ = x2 + 55y2

lies in the same genus and in a different class of f . To see this, consider

g1 =

[
1/4 −11/4
1/4 5/4

]
, g2 =

[
1/7 −22/7
2/7 5/7

]
.

Then gt1fg1 = f ′ and gt2fg2 = f ′. Since g1 ∈ GL2(Zp) for all p 6= 2 and g2 ∈ GL2(Zp), we see that f and
f ′ are in the same genus. However, a direct computation shows that there does not exist g ∈ GL2(Z) such
that gtfg = f ′, so they cannot be in the same class.

We recall that there is a brute-force way to determine the number of classes of a binary quadratic form
f over Q. Namely, write down all the classes forms equivalent to f under SL2(Z) (which is bounded by
the class number of Q[

√
disc(f)]), identify those equivalent under GL2(Z), and check pairwise if they are

equivalent under Q and Zp. Using this method, one can show that c(f) = 2 for the form f = 5x2 + 11y2 in
the previous paragraph. For a general quadratic form f , we will compute c(f) below as the class group of
the orthogonal group of f .
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We now generalize all the definitions in the above example/motivation.

Definition 12. Let Let G ⊂ GLn be a linear algebraic group acting on an affine m-dimensional variety X,
and let x ∈ X(OK).

• The genus gen(x) of x is the collection of all y ∈ X(OK) such that y = gKx for some gK ∈ G(K), and
y = gvx for some gv ∈ G(Ov) for all finite places v.

• The class cl(x) of x is the G(OK)-orbit of x.

• If one writes
gen(x) =

⊔
i∈Ix

cl(fx)

for some set of representatives fx in the genus of x, then fG(x) is defined to be the cardinality of Ix.

Theorem 13. Let Gx = {g ∈ G : gx = x}. Then fG(x) is the number of double cosets Gx(A∞K )gGx(K) of
Gx(AK) which are contained in G(A∞K )G(K). In particular, fG(x) is finite.

Proof sketch. Let ð be the quotient set obtained from gen(x) by identifying elements belonging to the
same class. We will construct the bijection between ð and the set M of double cosets Gx(A∞K )gGx(K)
of Gx(AK) contained in G(A∞K )G(K), and leave the verification to the reader (see [2, Theorem 8.2]). Let
g = Gx(A∞K )gGx(K) ∈ M , and write g = g∞gK with g∞ ∈ G(A∞K ) and gK ∈ G(K). Defining yg := gKx,
the bijection θ : M −→ ð is given by θ(g) = yg.

Corollary 14. If f is a classically integral quadratic form over OK , then c(f) = Cl(Of ), where

Of = {g ∈ GLn : gtAfg = Af}.

Proof. Let X ⊂ An2

be the variety of n × n symmetric matrices, and consider the action of G = GLn by
g(x) = gtxg. Clearly Gf = Of . If we can show that Of (AK) ⊂ G(A∞K )G(K), then we are done by the
theorem above.

For each finite place v, clearly G(Ov) contains a matrix with determinant -1, so any element t ∈ Of (AK)
has st ∈ SLn(AK) for a suitable element s ∈ G(A∞K ). But we know that Cl(SLn(K)) = 1 as SLn satisfies
absolute strong approximation, so st = s∞sK for some s∞ ∈ SLn(A∞K ) and sK ∈ SLn(K). In particular,

t = s−1s∞sK ∈ G(A∞K )G(K),

as desired.

Remark. The above corollary agrees with the philosophy that local-global classification problems are related
to the class group, since they are the analog of first cohomology in geometry.
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