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Exercise 1: The Power Residue Symbol (Legendre, Gauss, et al.)

This exercise is based on Chapter V1L, § 3, plus Kummer theory (Chapter III,
§2). Let m be a fixed natural number and X a fixed global field containing
the group p,, of mth roots of unity. Let S denote the set of primes of K con-
sisting of the archimedean ones and those dividing m. If a,...,a, arc
elements of K*, we let S(ay, ..., a,) denote the set of primes in S, together
with the primes o such that |a/], # 1 for some I. For ae K* and be I*®

the symbol (%) is defined by the equation

. (t:/a)lu:(b) - (‘_:’) -Va'
where L is the Geld X(3/a).

EXERCISE 1.1. Show (E) is an mth root of 1, independent of the choice
of 3fa.

Exerciss 1.2. Working in the field L' = K(3/a, 3/a") and using Chapter
VIL, § 3.2 with K’ = K and L = X(3/a), show

(-0 nem

ExBrciss 1.3. Show

-6 o

1 These “exercises” refer primarily to Chapter VII, “Global class ficld theory”, and were
prepared after the Conference by Tate with the connivance of Serre. They adumbrate
some of the important results and interesting applications for which unfortunately there
was not enough time in the Conference itself.
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EXERCISE 1.4. (Generalized Euler criterion.) If v¢ S(a) then m{(Nv—1),
where Nv = [k(v)], and (g) is the unique mth root of 1 such that

(%) = aql"'n-l (medp,).

Exercisg 1.5, (Explanation of the name “power residue symbol”) For
v ¢ S(a) the following statements are equivalent:

o()-1

(ii) The congruence x™ = a (mod p,) is solvable with x e o,.
(iii) The equation x = a is solvable with x ¢ K,.

(Use the fact that k(g)* is cyclic of order (No—1), and Hensel's lemma,
Chapter II, App. C.)

Exercise 1.6. If b is an integral ideal prime to m, then
Ne-1
(5 al w  for (&
(Do this first, using Exercise 1.4, in case b = o is prime. Then for general
=Y’ n,9, note that, putting No = 1 +mr,, we have
Nb = [ +mr) = 14+m Y nor, (mod m?).)
Exercise 1.7. If @ and beJ5® are integral, and if ¢’ = a(modb),

wea (5) = 5)

Exercise 1.8, Show that Artin's reciprocity law (Chapter VII, § 3.3) for a
simple Kummer extension L = K(%/a) implies the following statement: If
b and V' € IF®, and b 5~* = (c) Is the principal ideal of an element c€ K*
such that c e (K3)™ for all v e S(a), then ( ,) = (g) Note that for v ¢ S,
the condition ¢ e (K*)" will certainly be satisfied if ¢ &= 1 (mod p,).

Exgrcist 1.9. Specialize now to the case K= Q, m =2 Let a,b,...
denote arbitrary non-zero rational integers, and let P, 0, .. . denote positive,

odd rational integers. For (a, P) = 1, the symbol (;‘—,) ((P)) =41is

Hence,
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defined, is multiplicative in each argument separately, and satisfies

(g) - (}-‘:) ifa=b(modP).
Artin’s reciprocity law for Q(,/2)/Q implies

™ (3)=(3) irP=emotsan,

where g, deaotes the “odd part of a”, i.e. @ = 2°a,, with @ 0odd. (Use the
fact that numbers = 1 (mod 8) are 2-adic squares.)

ExeRCISE 1.10. From Exercise 1.9 it is easy to derive the classical law of ,

quadratic reciprocity, namely

(';—l) —(-17, (f,) (- and (('D (%) P

Indeed the formula (*) above allows one to calculate (%) as function of P
for any fixed a in a finitc number of steps, and taking @ = ~1 and 2 one

proves the first two assertions easily. For the last, define

@2=(3)(8) o wo-=1
Then check first that if P = Q (mod 8) we have

eo=(3)

and the given formula is correct. (Writing Q = P+8a¢ one finds using
Exercise 1.9 that, indeed,

®-()-()-)
Now, given arbitrary relatively prime P and O, onc can find R such that

RP = Q (mod 8) and (R, @) = 1 (even R = 1(mod Q)), and then, by what
we have seen,

<P,O)<R,0) = (PR, Q) = (-El)

Fixing R and varying P, keeping (P, Q) = 1, we sece that (P, O) depends
only on P (mod 8). By symmetry (and the fact that the odd residue classes
(mod 8) can be represented by numbers prime to any given number), we
see that <P, 0) depends only on Q (mod 8). We are therefore reduced to
a small finite number of cases, which we Ieave to the reader to check. The
next exercise gives a general procedure by which these last manoecuvres can
be replaced.
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Exercise 2: The Norm Residue Symbol (Hilbert, Hasse)

We assume the reciprocity law for Kummer extensions, and use Chapter
VII, § 6. The symbols m, X, S, and S(ay, ..., 4} have the same significance
as in Exercise 1. For a and b € K* and an arbitrary prime o of X we define
(a, b), by the equation

(Ya)"® = (a,b),%/a,

where 7,: K¥ = G® is the local Artin map associated with the Kummer
cxtension K(3/a)/X.

Exercise 2.1, Show that (g, b), is an mth root of 1 which is independent
of the choice of ¥a.

Exercise 2.2. Show (g, b){a, b"), =(a, bb"), and (a, b),(a’, b), = (ad’, }),.
Thus, for each prime v of X, we have a bilirear map of KX* x K* into the
group p,, of mth roots of unity.

Exercisg 2.3. Show that (g, b), = 1 if either @ or b e (X7)™, and hence
that there is a unique bilinear extension of (g, 5), to K¥ x K3,

This extension is continucus in the v-adic topology, and can be described
by a finite table of values, because K¥/(K7)™ is a finite group (of order
m?{|m],, where |m|, is the normed absolute value of m at v). Moreover, the
extended function on K¥ x K can be described purely locally, i.e. is inde-
pendent of the field X of which K, is the completion (because the same is
true of ), and induces a non-degenerate pairing of X3/(K3)™ with itself
into y,; however we will not use thesc local class field theoretic facts in
most of this exercise. For a general discussion of (g, b),, and also for some
explicit formulas for it in special cases, see Hasse’s “Bericht”, Part II,
pp. 53-123, Serre’s “Corps Locaux”, pp. 212-221, and the Artin-Tate notes,
Ch. 12. The symbol (g, b), defined here coincides with that of Hasse and
Serre, but is the opposite of that defined in Artin-Tate. While we are on
the subject, our local Artin maps ¢, coincide with those in Serre and in
Artin-Tate, but are the opposite of Hasse's.

EXerCISE 2.4. Show that (4,5), =1 if b is 2 norm for the extension
K(Ya)/K,. (See Chapter VII, § 6.2; the converse is true also, by local class
field theory, but this does not follow directly from the global reciprocity
law.)

Exerciss 2.5, We have (a,5), =1 if a+be(X$)™; in particular,
(a, —a), = 1 = {a, 1-a),. (This follows from the purely algebraic lemma:
Let F be a field containing the group p,, of mih roots of unity, and let ac F*.
Then for every x € F the element x™—a Is @ norm from F(':/a). Indeed, let
@" = g. The map o «’f« is an isomorphism of the Galois group onto a
subgroup , of u,, and is independent of the choice of a. Hence if ({,) is a
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system of representatives of the cosets of g, in ,, we have for each xe F
4
x"—a =‘l—! (x~{a) = Nr(-)/r(:i‘[x(x-(ga)).
Q.E.D)

Exercisg 2.6, Show that (g,8)(b,a), = 1. (Just use bilinearity on
1 = (ab, —ab),.)

Exgrcisg 2.7. If o is archimedean, we have (g, b), = 1 unless K, is real,
botha <0 and b <0in K, and m = 2. (In the latter case we do in fact

have (g, b), =—1; see the remark in Exercise 2.4. Note that m > 2 implics -

that K, is complex for every archimedean 0.)
Exerciss 2.8. (Relation between norm-residue and power-residue symbols.)

'a od)
If 0¢ S(a), then (2,5), = (v) ; in particular, (2,8), = 1 for v¢ S(a, ).

(See the first lines of Exercise 1 for the definition of S and S(a), etc. The
result follows from the description of the local Artin map in terms of the
Frobenius automorphism in the varamified case. More generally,

()

0¢S=>(a,b),= (;). whete ¢ = (— 1) P)go) ~o(a)

is a unit in X, which depends bilinecarly on a and 5. To prove this, just
write @ = %"@g, and b = n°®b, where v(x) = 1, and work out (g, b), by
the previous rules; for the geometric analog discussed in remark 3.6 of
Chapter VII, see Serre, loc. cit., Ch. III, Section 4.)

Exercise 2.9, (Product Formula) For a,be X* we have [](a, b), = 1,
the product being taken over all primes v of X.

Exerciss 2.10. (Zhe general power-reciprocity law.) For arbitrary a and b

T 9-n ™ ()

where (b)* is defined in Chapter VII, § 3.2,

Warning: With (:) defined in this generality the rule (ﬁ‘g) - (g) (‘g)
docs not always hold, but it does bold if S(b) ~ S(a, @) = S, and especially
if b is relatively prime to  and a’. The other rule, (%,) = (g) (—g,) holds
in general.

Using Exercises 2.6, 2.8 and 2.9, prove that

(g) (g) ) Ceese sm( b.a)
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In particular
o) (g) (g)'t=°1:ls(b. @), if S(a)nS(b) =S5,
a
:') (2‘) 01:13(1, b),, ifS(A)=S5.

Exercise 2,11, If X = Q and m = 2, then S = {2, w}, and for P > 0
as in Bxercise 1.10, we bave (x, P),, = 1. Hence the results of Exercise 1.10
are equivalent with

(= p-1 r-1.0-1
(—1,P)=(~-1)3, (,P);=(~-1)%, and (P,Q);=(-1)3 "3
for odd P and Q. On the other hand, these formulas are easily established
working locally in Q,. In particular, the fact that (1+4c, b); = (—1)"¢,
from which the value of (g, b); is easily derived for all a, b using Exercises

2.2, 2.5 and 2.6, is a special case of the next exercise.

Exercis 2.12. An element a e X is called v-primary (for m) if K/a)/K
is unramified at ». For o ¢ S, there is no problem: an element g is ¢-primary
if and only if (@) = 0 (mod m). Suppose now v divides mand ms=pisa
prime number. Let { be a generator of y,, and put 4 = 1—{. Check that
A7~Y/p is a unit at v, and more precisely, that 2! = —p (mod pd), so that
A=3p =—1(mod p,). Let a be such that g = 1 (mod pAo,), s0 that we
have a = 1+ A%¢, with ¢ 6 0,. Prove that a is p-primary, and that for all b,

(av b)v = C's"”“”,
where S denotes the trace from k(v) to the prime field and ¢ is the v-residue
of ¢. Also, if a = 1 (mod plp,), then a is o-hyperprimary, i.e. a e (K3)™.

(Let o = a, and write @ = 1+ Ax. Check that x is a root of a polynomial
J(X) eofX] such that f{X) = X?—X—c(mod p,). Thus f/(x) =—1 £ 0
(mod p,), s0 K(x) = K,(Ya) is indeed unramified. And if ¢ = 0(mod p,)
then f(X) splits by Henscl's lemma, so K,(Jo) = K. Now ¥ = x+¢
(mod p,), so if No = p/, then

& =xY = x+ctc+. ..+ = x+5() (modp,).

On the other hand, if « = {a = 144X, then ¥’ = x—1 (mod p,). Com-
bining these facts gives the formula for (g, b),.)

Exercise 2.13. Let p be an odd prime, { a primitive pth root of unity,
K=Q{), and m = p. Then p is totally ramified in X, and 1 = 1-~{
generates the prime ideal corresponding to the unique prime v of X lying
over p. Let U;denote the group of units = 1 (mod 1Y) in K2, fori=1,2,....
Then the image of #; = 1—21* gencrates U,/U,, ,, which is cyclic of order p,
and the image of 4 generates K§/(K3)°U;. By the preceding exercise,
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U,,1 = (X7)'. Hence the elements 4, { = 5,,1-2% =n,,..., 1= =y,
generate (K3)/(K3)?. But that group is of order p*/jpl, = p'*?, so these
generators are independent mod pth powers. Show that

(a) (n, n)s = (i s Do 1o 1) g0 l);". foralli,j= 1.
®) fi+j2 p+1,then (a,b), = 1 forall ae U, and be U;.
_J1, for1gigp-1
© @A ={p oS
(@) (o, b), is the unique skew-symmetric pairing K§ x K} - p, satisfying
(2) and (c).

(For (a), note ;4 A/, = 1,4, divide through by n,. 5, and use Exercise 2.5 '

and bilinearity; the oddness of p, which implies (a, b) = (g, —b) in general
and (a, ) = 1 in particular, is used here. The rest all follows easily, except
for (¢) which is a consequence of the preceding exercise; but note that the
first (p—1) cases of (c) arc trivialitics, because
e )= 12,29, = 1= ), =1 forl <i<p-1)

ExercisB 2.14. (Cubic reciprocity law.) Specialize to p = 3 in the pre-
ceding exercise. The ring of integers R = Z+Z{ is a principal ideal domain,
whose non-zero elements can be written in the form A"{"a, with @ = +1
(mod 3R). Prove

® (g) = (g), for relatively prime g and b, each = 11 (mod 3R),
and also

{

- = c—m'n
** (a) , fota=+1+3(m+nd).

@)=
a
As an application, prove: If g is a rational prime = 1 (mod 3), then 2 is &

cubic residue (mod q) if and only if g is of the form x+27y* with x, ye Z.
(Write g = 2% with = = +1 (mod 3R). Then Z/gZ = R/nR, 5o 2 is a cubic
residue (mod g) if and only if (z) = 1. Now use (*), and translate (’—;) =1
into a statement about g.)

Exercisg 2.15. Let L be the splitting ficld over Q of the polynomial
X3—2. The Galois group of L/Q is the symmetric group on three Ietters.
Using the preceding exercise, show that for p # 2, 3 the Frobenius auto-
morphism is given by the rules:

Fya(p) = (1), if p = 1 (mod 3) and p of the form x24-275?,

Fo(p) = 3-cycle, if p = 1 (mod 3) and p not of the form x2 4272,

Fyyo(p) = 2-cycle, if p =—1 (mod 3).
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Hence, by Tchebotarov’s theorem, the densities of these sets of primes are
1/6, 1/3 and 1/2, respectively.

Exercise 2.16. Consider again an arbitrary X aad m. Let a,,...,q, be
a finite family of elements of X*, and let L be the Kummer extension generated
by the mth roots of those elements. Let T be a finite set of primes of X
containing S(a,,...,a,), and big enough so that both Jy = X*Jg 1, and
Jy, = L*J; 5, where T’ is the set of primes of L lying over T. Suppose we
are given elements {,; ey, for veT and 1 £ i < r, such that

(i) For cach i, we have []¢,; = 1, and
el

(ii) tE-‘or I?:h veT, there exists an x,e K such that (x,,a), = {,,
or all .

Show then that there exists 2 T-unit x € X such that (x, a), = {,,; for all
veTandalll <i<gvr,

The additional condition on T, involving I, is necessary, as is shown
bytheexample K = Q,m =2, T = {0,2,7},r= 1,4, =—14, {1 =—1,
{21=—1, {5,=1 To prove the statement, consider the group
X = [Tl KD/(KDY", the subgroup 4 generated by the image of Ky, and
the smaller subgroup A, generated by the images of the elements a,, 1 <i<r.
The form (x, »> = [L,e7 (X=» ¥,)s Bives & non-degenerate pairing of X with
itself to u,,, under which A is self orthogonal, and indeed exactly so, because
[X] = m* and [4] = »f, where ¢ = [T]. (See step 4 in the proof of the
second inequality in Chapter VII, § 9, the notations 5, », and s there being
replaced by 7, m, and ¢ here.) Thus X/4 ~ Hom (4, p1.) (note by the way
that both groups are isomorphic to Gal (K(/K;)/K), by class field theory and
Kummer theory, respectively), and, vice versa, A s Hom (X/4, s.). So far,
we have not used the condition that J; = L*J} 5. Use it to show that if
ac A and z=(e) e n,(4y) for all v, where =, is the projection of X onto
K (K3)", then a € Ay, i.e. Y/ae L. Now show that, in view of the dualities
and orthogonalities discussed above, this Iast fact is equivalent to the
statement to be proved.

Exercise 3: The Hilbert Class Field

Let L/K be a global abelian extension, v a prime of X, and i,: K¥ — J; the
canonical injection. Show that o splits completely in L if and only if
I(K?) = K*NyyJy, and, for non-archimedean o, that v is unramified in L
if and only if i,(U) @ K*NxJ,, where U, is the group of units in X,.
(See Chapter VII, § 5.1, § 6.3.) Hence, the maximal abelian extension
of X which is unramified at all non-archimedean primes and is split com-
pletely at all archimedean ones is the class field to the group K*Jg s, where
S now denotes the set of archimedean primes. (Use th¢ Main Theorem
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(Chapter VII, § 5.1) and the fact that K*N;zJ, is closed.) This extension
is called the Hilbert class field of X; we will denote it by X’. Show that the
Frobenius homomorphism Fy;y induces an isomorphism of the ideal class
group Hy=Ip/Py of K onto the Galois group G(K'[/K). (Use the Main
Theorem and the isomorphism Jx/Vx s 25 fz.) Thus the degree [K': K] is
equal to the class number ke = [Hx] of X. The prime ideals in X decompose
in K’ according to their ideal class, and, in particular, the ones which split
completely are exactly the principal prime ideals. An arbitrary ideal a of
K is principal if and only if Fy r(a) = 1.

The “class field tower”, K < K’ ¢ K" = (K)’< ... can be infinite (see ’

Chapter IX). Using the first two steps of it, and the commutative diagram
(see (11.3), diagram (13))

Ig _feix , G(K'IK)
con v
1“ Fx'Ie G( K'] K').

Artin realized that Hilbert’s conjecture, to the effect that every ideal in X
becomes principal in K’, was equivalent to the statement that the Ver-
lagerung} V was the zero map in this situation. Now G(K”/K") is the com-
mutator subgroup of G(K*/K) (Why?), and so Artin conjectured the
“Principal ideal theorem” of group theory: If G is a finite group and G* its
commutator subgroup, then the map V: (G{G°) — G°[G°) is the zero map.
This theorem, and therewith Hilbert's conjecture, was then proved by
Furtwiingler. For a simple proof, see Witt, Proc. Intern. Conf. Math.,
Amsterdam, 1954, Vol. 2, pp. 71-73.

The first five imaginary quadratic fields with class number % 1 are those
with discriminants —15, —20, —23, —24, and —31, which have class
numbers 2, 2, 3, 2, 3, respectively. Show that their Hilbert class fields are
obtained by adjoining the roots of the equations X243, X241, X*-X~1,
X243, and X+ X—1, respectively. In general, if X is an imaginary
quadratic field, its Hilbert class field X" is generated over X by the j-invariants
of the elliptic curves which have the ring of integers of X as ring of endo-
morphisms; see Chapter XIII,

LetJ3§ denote the group of idiles which are positive at the real primes of £
and are units at the non-archimedean primes. The class field over X with
norm group K*J§ is the maximal abelian extension which is unramified
at all non-archimedean primes, but with no condition at the archimedean
primes; let us denote it by X,. Let P¥ denote the group of principal ideals of
the form (a), where a is a totally positive element of K. Show that Fy ¢
gives an isomorphism: Iy/PF =~ G(K;/K). Thus, G(X,/K") is an clementary

t Called the fransfer in Chapter 1V, § 6, Note after Prop. 7.
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abelian 2-group, isomorphic to Pg/P}. Show that (Py: PE)}(Ks: K$) = 27,
where K& = K* nJ} is the group of totally positive units in X, and r,
is the number of real primes of K.

We have Q, = Q, clearly, but this is a poor result in view of Minkowski's
theorem, to the effect that Q has no non-trivial extension, abelian or not,
which is unramified at all non-archimedean primes (Minkowski, “Geometrie
der Zahlen", p. 130, or “Diophaantische Approximationen® p. 127). Consider
now the case in which Kis real quadratic, [K: Q] = 2, and r, = 2. Show that
[K;: K']1=1 or 2, according to whether Ne =—1 or Ne = I, where ¢ is a
fundamental unit in K, and N' = Nyyq. For example, in case X = Q(,/2) or
Q(/5) we have K* = K, because the class number is 1, and consequently also
K, = K, because the units s = 1+./2 and & = §(1+,/5) havenorm —1. On
the other hand, if X = Q(,/3), then again X' = K, but K, # K, because
¢ = 2+./3 has norm 1; show that K, = K(;/—1). In general, when ~1
is not a local norm everywhere (as in the case K = Q(4/3) just considered),
then Ne = 1, and K, # K'. However, when —1 is a local norm everywhere,
and is therefore the norm of a number in K, there is still no general rule for
predicting whethcer or not it is the norm of a wnit.

Exercise 4. Numbers Represented by Quadratic Forms
Let K be a field of characteristic different from 2, and

fX) =Y ayX\X,
a non-degenerate quadratic form in n variables with coefficients in X. We
say that f represents an element ¢ in K if the equation f(X) = ¢ has a solution
X = xe K" such that not all x, are zero, IffrepresentsQin K, then frepresents
all elements in K. Indeed, we have

(X +Y) = CAX)+1B(X, V)+AY).
If f(x) = 0 but x % (0,0,...,0), then by the non-dcgeneracy there is a
y € K* such that B(x, y) # 0, so that f{tx+y) is a non-constant linear function
of ¢ and takes all values in X as ¢ runs through X.

A linear change of coordinates does not affect questions of representability,
and by such a change we can always bring f to diagonal form: f = ¥, a, X?
with all ¢, % 0. If f= ¢X} — g(Xs,..., X,) then f represents 0 if and
only if g represents ¢, because if g represents O then it represents c. Hence,
the question of representability of non-zero c's by forms g in 2— 1 variables is
equivalent to that of the representability of 0 by forms f'in » variables. The
latter question is not affected by multiplication of f by a non-zero constant;
hence we can suppose f in diagonal form with a, = 1 in treating it:

Exerciss 4.1. The form f = X?* does not represent 0.
Exercise 4.2. The form f = X2?—b¥? represents 0 if and only if b € (K*)*.
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EXERCISE 4.3. The form f = X2—pY3—cZ? represents 0 if and only if
¢ is a norm from the extension field K(/b).

Exercisg 4.4. The following statements are equivalent:

(i) The form f = X2~bY2—cZ2+acT? represents 0 in K.

(ii) c is a product of a norm from K(y/a) and a norm from K(,/5).

(iii) ¢, as element of K(,/ab), is a norm from the field L = K(/a, \/b).

(iv) The form g = X*—5¥*—cZ? represents 0 in the ficld K(,/ab).
(We may obviously assume neither @ nor b is a square in X, Then the
equivalence of (i) and (i) is clear because the reciprocal of a norm is a norm,
and the equivalence of (jii) and (iv) follows from Exercise 4.3 with X replaced
therein by K(,/ab). It remains to prove (ii) <> (iii), and we can assume
ab ¢ (K*?, for otherwise the equivalence is obvious. Then Gal(L/K) is a
four-group, consisting of clements 1, p, g, = such that p, o, and 7 leave
fixed, respectively, \/ad, \/a, and /b, say. Now (i) <> (ii"): 3 x, y e L such
that x* = x, y* = y, and x!*#y'*? = ¢; and (iii) <> (iii") 3 z& L such that
#2'*? =¢. Henoe (ii)=> (iii) trivially. Therefore assume (iii’), put
u = c™12*, and check that u” = u, i.e. ue X(/a), and ¥*** = 1, Hence
by Hilbert’s theorem 90 (Chapter V, § 2.7) for the cxtension X{(,/a)/X, there
exists x # 0 such that x° = x and x*~! =4, Now put y = z%/x, and
check that (ii’) is satisfied.)

So far, we have doge algebra, not arithmetic. From now on, we suppose
K is a global field of characteristic # 2.

EXERCiSE 4.5. The form f of Exercise 4.3 represents 0 in a local field X,
if and only if the quadratic norm residue symbol (b, ¢), = 1. Hence frepre-
sents 0 in K, for all but a finite number of v, and the number of o’s for which
it does'not is even. Moreover, these last two statemeats are invariant under
multiplication of f by a scalar and consequently hold for an arbitrary non-
degenerate form in three variables over K.

Exercisg 4.6. Let fbe as in Exercise 4.4, Show that if f'does not represent 0
in a local ficld K,, then a ¢ (K?)?, and b ¢ (K*)?, but abe(K?)?, and ¢ is
not 2 norm from the quadratic extension K,(\/a) = K,(\/b). (Just use the
fact that the norm groups from the different quadratic extensions of X,
are subgroups of index 2 in X7, no two of which coincide.) Now suppose
conversely that those conditions are satisfied. Show that the set of elements
in X, which are represented by fis N~ ¢N, where ¥ is the group of non-zero
norms from K(,/a), and in particular, that f does not represent 0 in K.
Show, furthermore, that if N—cN 3 K2, then —1¢ N, and N+Nc N.
Hence f represents every non-zero element of K, unless K, ~ R and f is
positive definite.

EXERCiSE 4.7. A form fin n > 5 variables over a local ficld K, represents
0 unless X, is real and f definite.
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EXBRCISE 4.8, Theorem: Let K be a global field and f a non-degenerate
gquadratic form in n variables over K which represents 0 in K, for each prime
vof K. Then frepresents0in K. (For n = 1, trivial; n = 2, cf. Chapter VII,
§ 8.8; n = 3, cf, Chapter VII, § 9.6 and Exercise 4.3; n = 4, use Exercise
4.4 to reduce to the case # = 3; finally, for n > §, proceed by induction: Let

Kx) = axi"'bx;_G(xav . onxu)o
where g has n—2 > 3 variables. From Exercise 4.5 we know that g repre-
sents 0 and hence every number in K, for all ¢ outside a finite set S. Now
(KJ)? is open in X*. Hence, by the approximation theorem there exist
clements x,; and x, in K, such that the clement ¢ = axj+bx3 ¥ 0 is repre-
sented by ¢ in X, for all v in S, and hence for all v. By induction, the form
¢Y*—g(X;,...., X,) in n—1 variables represents 0 in X, Hence f does.)

EXercise 4.9. Corollary: If n > 5, then f represents O in K unless there is
a real prime v at which fis definite.

Exercse 4.10. A rational number ¢ is the sum of three rational squares
if and only if ¢ = 4°r where r is a rational number > 0 and # 7 (mod 8);
every rational number is the sum of four rational squares.

Exercise 4.11. The statements in the preceding exercise are true if we
replace “rational” by “rational integral” throughout. (The 4 squares one
is an immediate consequence of the 3 squares one, so we will discuss oaly
the latter, although there are more elementary proofs of the four square
statement not involving the “deeper™ three square one, Let ¢ be a positive
integer as in 4.10, so that the sphere |X|* = X}+ X3+ X% = ¢ has a point
x = (xy, X3, X3) with rational coordinates. We must show it has a point
with integral coordinates. Assuming x itself not integral, let z be an integral
point in 3-space which is as close as possible to x, so that x = z+a, with
0 < |a]* < 3/4 < 1. The line / joining x to z is not tangent to the sphere;
if it were then we would have ja}? = |z|>—|x{* = [z]*~¢, an integer, contra-
diction. Hence the linc / mects the sphere in a rational point X’ # x. Now
show that if the coordinate of x can be written with the common denominator
d > 0, then those of x' can be written with the common denominator
d' = |a|*d < d, so that the sequence x, X/, (x')',... must lead eventually
to an integral point, Note that d' is in fact an integer, because

d' = |affd = [x—z]*d = (|x]*~2(x, 2) + |z]})}d = ed—2(dx, 2)+|z}*d.)

Exerciss 4.12, Let f be a form in three variables over K. Show that if
J does not represeat 0 locally in K, then the other numbers in K, not
represented by f constitute onc coset of (K7)* in X?. (Clearly one can
assume f = X2—bY?—cZ?; now use Exercise 4.6.) Using this, show that
if K= Q and f is positive definite, then f does not represent all positive
integers. (Note the last sentence in Exercise 4.5,)
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For further developments and related work see O. T. O'Meara: “Intro-
duction to Quadratic Forms" (Springer, 1963) or Z. 1. Borevi® and L R.
Safarevi®, “Teorija Cisel” (“Nauka”, Moskva, 1964). [English translation,
Z. L Borevich and I. R. Shafarevich, “Number Theory”, Academic Press,
New York: German translation, S. 1. Borevicz and I R. Safarevi¥,
“Zahleatheorie”, Birkhiuser Verlag, Basel.]

Exercise 5: Local Norms Not Global Norms, etc.

Let L/K be Galois with group G = (1, p, 6, ©) = (Z/2Z)*, and let K, K.
and K; be the three quadratic intermediate fields left fixed by p, ¢, and 1,
tlspectivdy. Let N‘ = N""(K“) for{ = l, 2, 3, and let N = NLI‘(L‘)'

Exercisg 5.1. Show that NyN,N, == {xe K*|x* e N}. (This is pure
algebra, not arithmetic; one inclusion is trivial, and the other can be proved
by the methods used in Exercise 4.3.)

Exercise 5.2. Now assume X is a global field. Show that if the local
degree of L over K is 4 for some prime, then Ny N, N; = K* (cf. Chapter
VI, §11.4), Suppose now that all local degrees are 1 or 2. For
simplicity, suppose X of characteristic % 2, and let K, = K(Ja) for
i=1,2,3. For each i let S, be the (infinite) set of primes of X which split
in K;, and for x e K* put

@(x) ='g'(a2' x)v =.1:£’(a5' x), =.1:L(0; ’ x)a ==I.Is’(ah x).
= '1.1’(“1' x)o = ’l:l.(azv x)v ==l1,

where (x,y), is the quadratic porm residue symbol. Show that
N;N;N; = Kerp and is a subgroup of index 2 in X*. (The inclusion
NN, N, < Kerg is trivial. From Exercise 5.1 above and Chapter VII,
§ 11.4 one sces that the index of Ny N, N, in K* is at most 2. But there
exists an x with ¢(x) = —1 by Exercise 2.16))

ExercisE 53. Let K= Q and L = Q(/13, \f17). Show that if x is a

product of primes p such that (153) =-=1(gp=251711,...), then

o) = (l_:;) Hence 52, 72, 102, 112, 143, . . . are some examples of numbers

which are local norms everywhere from Q(\/13,/17) but arc pot global
norma, Of course, not every such number is a square; for example, —14*
is the global norm of 3(7+2,/13+4/17), and comparing with the above we
see that —1 is a local norm everywhere but not a global norm,

Exgrcise 5.4. Suppose now that our global 4-group extension L/K has
the property that there is exactly one prime v of X where the local degree
is 4: Let w be the prime of L above ¢ and prove that A ~%(G, L*) = 0, but
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A-NG, LY ~ Z/2Z. (Use the exact sequence pear the beginning of
paragraph 11.4. The map g is surjective, as always when the Lc.m. of the
local degrees is the global degree. And the map g: R ~%(G, J) = A(G, C»)
is also injective, because of our assumption that the local degree is 4 for
only one prime.)

-Let 4, resp. 4,, be the group of clements in L*, resp Ly, whose norm
to K (resp. to K,) is 1, and let 4 be the closure of A in LY. It follows from
the above that

A=@y @)y L),
and that

=@y @y
is of index 2 in A,. Now, as is well known, there is an algebraic group T
defined over X (the twisted torus of dimension 3 defined by the equation
Nye(X) = 1) such that T(K) = 4 and I(X,) = A,. Hence we get examples
which show that the group of rational points on a torus T is not necessarily
dense in the group of v-adic points (see last paragraph below). However,
it is not hard to show that if 7' is a torus over X split by a Galois extension
L/K, then T(K) is dense in T(K,) for every prime o of K such that there
exists a prime v’ % v with the same decomposition group as v; in particular,
whenever the decomposition group of v is cyclic, and more particularly,
whenever v is archimedean.

As a concrete illustration, take K = Q and L = Q(/—1,/2) = Q(0),
where {¢ =—1. Then L is unramified except at 2, but totally ramified at 2,
and consequently there is just one prime, 2, with local degree 4. Let M = Q(i)
where { = {3 = f~1, and let L, and M, denotc the completions at the
primes above 2. It is easy to give an ad-hoc proof without cohomology that
the elements of L with norm 1 are not dense in those of L%: just check that
the element z = (2+7)/(2—i) ¢ M, is a norm from L,, to L, but that z(M})?
contains no clement y e M such that y is a global norm from L to M and
such that N; “lo(y) =1

Exercise 6: On Decomposition of Primes

Let L/K be a finite global extension and let S be a finite set of primes of K.
We will denote by Spls (L/K) the set of primes o ¢ S such that o splits com-
pletely in L (i.e. such that L ? K, = K5, and by Spls (L/K) the set of

primes o ¢ S which have a split factor in L (i.c. such that there exists a
K-isomorphism L — X)), Thus Spls(L/K) < Spls(L/K) always, and
equality holds if X is Galois, in which case Spl§ (L/K) has density [L: X}~*
by the Tchebotarov density theorem. (Enunciated near end of Chapter
VIII, § 3)



362 EXERCISES
Exercisg 6.1. Show that if L and M are Galois over X, then
L = M<>Spls(M) < Spis(L),
(Indeed, we have

Spls (LM/K) = Spls(L/K) n Spls(M/K),
50

L = M =>Spls(M) = Spls(L)= Spls(LM/K) = Spl:(M/K)
=>[LM:K]=[M:K]=>LcM;

where was Galoisness used?) Hence

L = M<>Spls(L) = Spls(M).
Application: If a separable polynomial f(X)e K{X] splits into linear
Jactors mod p for all but a finite munber of prime ideals v of K, then f splits
into linear factors in K. (Take L = splitting field of f(X), and M = K,
and S large enough so that f has integral coefficients and unit discriminant
outside S.) Finally, note that everything in this exercise goes through if
we replace “all primes v ¢ S™ and “all but a finite number of primes o” by
“all v in a set of density 1”.

Exercise 6.2. Let L/K be Galois with group G, let H be a subgroup of G,
and let E be the fixed ficld of H. For each prime v of X, let G° denote a
decomposition group of v. Show that v splits completely in E if and only if
all of the conjugates of G° are contained in H, whereas o has a split factor in
E i and only if at least one conjugate of G° is contained in H. Hence, show
that the set of primes Splg (E/K) has density [U pHp~)(G]. Now

prove the lemma on finite groups which states that the union of the conju-
gates of a proper subgroup is not the whole group (because they overlap a
bit at the identity!) and conclude that if Spl; (E/K) has density 1, then
E = K. Application: If an irreducible polynomial £(X) € K[X) has a root
(mod p) for all but a finite number of primes p, or even for a set of primes p
of density 1, then it has a root in K. This statement is false for reducible
polynomials; consider for example f(X) = (X2—a){(X*—b)(X>—ab),where
@, b, and ab are non-squares in XK. Also, the set Spl’ (E/X) does not in
general determine E up to an isomorphism over X; cf. Exercise 6.4 below.

Exercise 6.3. Let H and H' be subgroups of a finite group G. Show that
the permutation representations of G corresponding to H and H’ are iso-
morphic, as linear representations, if and only if each conjugacy class of G
meets H and H’ in the same number of elements. Note that if H is a normal
subgroup then this cannot happen unless A’ = H. However, therc are
examples of subgroups H and H’ satisfying the above condition which are
not conjugate; check the following one, due to F. Gassmann (Math. Zeit.,
25, 1926): Take for G the symmetric group on 6 letters (x) and put
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H={1, (X;X:)(X3X), (X1 X3)(X2X)), (X1X)(X:X3)}
H'= {]: (X X)(X3X), (X1 X)) (Xs5Xe), (X3X)(Xs Xs)}

(H leaves X5 and X fixed, where H'’ leaves nothing fixed; but all elements
# 1 of Hand H' are conjugate in G.) Note that there exist Galois extensions
of Q with the symmetric group on 6 letters as Galois group.

EXERCISE 6.4. Let L be a finite Galois extension of Q, let G = G(L/Q), and
let £ and E’ be subfields of L corresponding to the subgroups H and H'
of G respectively. Show that the following conditions are equivalent:

(2) H and H’ satisfy the equivalent conditions of Exercise 6.3.

(b) The same primes p are ramified in E as in E’, and for the non-
ramified p the decomposition of p in E and E’ is the same, in the sense
that the collection of degrees of the factors of p in E is identical with the
collection of degrees of the factors of p in E’, or equivalently, in the sense
that A/pA ~ A’/pA’, where A and A’ denote the rings of integers in E
and E' respectively.

(c) The zeta-function of E and E’ are the same (including the factors
at the ramified primes and at c0.)

Moreover, if these conditions hold, then £ and E’ have the same discriminant,
If H and H’ are not conjugate in G, then E and E’ are not isomorphic.
Hence, by Exercise 6.3, there exist non-isomorphic extensions of Q with the
same decomposition laws and same zeta functions. However, such examples
do not exist if one of the fields is Galois over Q.

Exercise 7: A Lemma on Admissible Maps

Let X be a global field, S a finite set of primes of X including the archimedean
ones, H a finite abelian group, and ¢: I -+ H a homomorphism which is
admissible in the sense of paragraph 3.7 of the Notes. We will consider
“pairs” (L, «) consisting of a finite abelian extension L of K and an injective
homomorphism «: G(L/K) - H.

Exercise 7.1. Show that there exists a pair (L, a) such that L/X is vorami-
fied outside S and p(a) = a(Fyx(a)) for all a & I%, where Fyy is as in Section
3 of the Notes. (Use Proposition 4.1 and Theorem 5.1.)

Exercise 7.2. Show that if ¢(v) = 1 for all primes v in a set of density 1
(e.g. for all but a finite number of the primes of degrce 1 over Q), then ¢
is identically 1. (Use the Tschebotarov density theorem and Exercise 7.1.)
Consequently, if two admissible maps of ideal groups into the same finite
group coincide on a set of primes of density 1, they coincide wherever they
are both defined.

Exercisg 7.3. Suppose we are given a pair (L,«) such that
«'(Fpx(v)) = @(v) for all v in a set of density 1. Show that (L', «') has
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the same properties as the pair (L, «) constructed in.Exercise 7.1; in fact,
show that if L’ and L are contained in a common extension M, then ' = L
and a’ = a. (Clearly we may suppose M/K finite abelian. Let 8, resp. &',
be the canonical projection of G(M/K) onto G(L/K), resp. G(L'/K). By
Exercise 7.2 and Chapter VII, § 3.2 we have xo 8o Fayr = o’ o & o Fyx.
Since a and o are injective, and Fy, ¢ surjective, we conclude Ker 8 = Ker ¢,
hence L = L', and finally a = «.)

Exercise 8: Norms from Non-abelian Extensions
Let E/K be a global extension, not necessarily Galois, and let M be the -
maximal abelian subextension. Prove that NyyCg = NyyxCy, and note
that this result simplifics a bit the proof of the existence theorem, as remarked
during the proof of the Lemma in Chapter VIL, § 12. [Let L be a Galois
extension of KX containing E, with group G, let H be the subgroup corre-
sponding to E, and consider the following commutative diagram (cf.
Chapter VII, § 11.3):

H"(H.Z) ~ H‘o:’ CBINLIBCL ~ HO(H. C1_)

cor l 91 1":/: 1 cor

A7%(G,Z) % G*5 Cg/Ny;xCp % A%G,Cp).

Since G*/0(H*) ~ G(M/K) this gives the result.]
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£(X)

I

— (020" o)

"

p~i
p LA AN 7 { _
e B (K erx e

Nobie x it a rot o £(X) ) a,\J. X)) = XP—X-cQMoJ B) a v(n)>0.

2 T cz0 (md 'P./) )‘H\u‘ £X) has @ So(u‘l’iom in t,, L-:) Hensell
Leewa, S a €(k)" end KL(T0) =K, is cleady unandied oer Ky

& Tf C30 Gl ) then we sHl hae F(X) sepable wod B . Tha
e K07k, i wnanmified , bt BG) = (A= € () |
(Het e wed 4 foch tet # K /K is Galor will KeosL add
( vumber folls | and Minply () € O X is sepuable ol peSpe O |
Heo P i Uamnihed in L)

) (a,b)v: \S‘SCC)V(.QI a o« CLLDVQ—) Herﬁ g: Tfiv/(%) , WLQl€ V,P .

Tf C30 OmoJ ’PV), Hen ae(Kf)" LU aLove, So Ca,l’»)v=‘. AIJD
‘S - S() vik) \£~S(o) vl ,

-
-

Now Considee c£0 (ed B) - As v it waawdbied in E(a) L) e j-Ks |
By depikion s F (W) = B (0
v P__; c ‘%J/p ‘
Fue(0 s " s weseled B) & " X zxte (ed )
¢

(e x Brom otz [#AX)



BE: FL/K(V) («) = K; o, our goa’ T chov FHa -Sk)=zi (mod 'R’),
ik il il @a), = 3TV by aloe. Lt

- Yo = 1+ A%, some %€ KR

o sl 3 -
Then Xs * S = 45X = -t (A%

~—

Thwr or VN> 0, X =%~ (med B). Alo,

J
Fe (0= Rt (%5)
Fe® &)~ | Yo

- >
= = = X;

\

Heree X 1S(2) = X; = X-i (med B).

212 @) Neke M+ PR Nigy - Using 2.7,

_ Y\_; )\S'ni
b= (5 W ),

tf

(M, ¥ (%, %) O, )" (e A (Mo, 1) (g, Mg )

= (V\;"r\j): (Y\i*jzni )v( Nig, M:' (“:,n;ﬁ ),
(Hee (4 M= (2,851 by 25.)

B) TP 4 optl, Then Mg e W <), Hew (M),=| b e

previvws exercie. Tle relt follow sine any ol o be writle. &

i, i d
K= M, N o Y\: Xp Xp € Upes

!

and SiM:laf{J for U;.



© If

leispt, then M,2) < (M A)=1|. &t (H2) is a
Pt of |, 5o M A=l TF i=p  Hen by 212

- SC-1n v
(Y\P,?\)v = \5 | V(

\f— Neg)!
= 3'(-1) N ﬁV/P: | .
@) We red to don vaguonar of K5 M7 > (k"x)/ac;)" , Ond w2 fapw
qCJ()/(H')p i§ 8?/\@(2&424 L‘j A, T, A, 12" But ?"’Pe/"ffd (a)
and @) Tels W how i musk Lo defied recm;w,[J '
QILF H@hQ We Cowsidﬁ( Kt@(t), 3- a Pr‘iM""‘on 'H\I“”J l'bo‘!‘ o-F ’ .
la,bs 1| (mod 20), rlatiel) prime.

it et (e sl Heww by

Thea S< {2, 2]
2. 10
Gy ("= Cha)s

) av\d 27 -(-9”.!

Sinece  3R= AR, one obsenves that &, Tk e U, (Be sore &5n)
Tws  (thEsl by 2BG. Now  (H,a)5s Uady=] , and
o CLadas| o we ae Wrking over Ay T pacticlas Thiy c’»-Tlred

By (&= 1.

= t(|+3(m+n3)ﬂ Thee Nla)= (lt3m- 30)" (gﬁf)L . and
N(’a);' = ZCM-M-MA)-('?-IM—/)-

Q) 2m -
NO\J ) \/-531\3 l,é, (%) - I 3 - ‘S "’\: ‘S mMm-N .

Neck obert Tt by 20 (5) = (@M, = (1rwm3) 2),,

0



Wrike [+ 3(min3) = [2(mtn) A" - (m+3n) A+ n At

s (20 ) (- twesn) 2) (HAX)  xe R,

: Artr) 2
Note that  (1+2etadA™)(1-47) € Uy wilh  CIADA =], So by 213

(20wt A, A)y =
~(m43n)

A [+t xeUy  (l#A%x, A), = 1. F‘if\au:)/ by Condidaing ("(M'fgn)/\3)(l—A3)}

one has (G A, 2 (8, L8 2 YT T
(2 <5

E@ Fix qz1 Cmid 3) prime, 5o g 1 +m'a!tJ sl in ()

D) Lot 2 be a cubic residue pod 4. Wrke 4= TTF wifl Tz (med 30).

NLOG T = (med 3R). TLen Z/‘m Y R/nR/ and $o

2 Cubic residue mod 4 & a cube redut wod T

& (=]
& (3)=

& T cubic resdue mod (Q)=ap

®© W=l Grod 22) o5 | js He only cube mod 20

& T= 46(a+EY), %peT -

Theahe 9= (1t 6Cxep3)) (146 (ep3y)

= (H6n-3m) + 2T m" |



() Sippore 4= X274 Leding = x+t2{3iy e Z7(3) one @

obseres that %:Tﬁ_- A\ lefore 2 oa Cubic  residue wod ﬁb

N~/
i D= by e, (DT T 2T (ed @) Heg

we need B odhow T (med @)=22) . But

T=x43(HDy = xtdyr 6Ty 3 Xty ed Q)

0nd X and Y mugt have 0 ppogi¢ Pmi:] o g il odd . Thui
T=| (med 1), oy desred

21? 93 'H-z no‘l‘ﬂ%qws ﬁw« L@ﬂwﬂ, we art CaMfJer.‘yﬁ

K‘@(?s) , m= 3’ a=Q' ‘S‘t{v:vl_%orviw}.
I p#23 ) thn pP¢SQ) . Henc

v Y5 = (2,9,
- by 2

i

F o (L)

< (?E)P (ml P) L5 L.

+ I = (mod 1) and of T for X2+7,75L, ten (%“)’"’ , 0
Fe® ()= 2

Ond FL/@ (p) = id-



®

+ TFf  pzl Geod 3) and not of e form xl-(uj"’ Hhen C’Z,?)# |
2 ) '.
SO Q% 2] (md F} ’ l’"\fbirxj CF‘) = 7 for 340 Heace
Fobyy (p (V2 = 502, Foby (P(¥E)= T Tif’ﬁ il
- - - Node  Fob(p) (¥)= KP
gy Pk 8 & Tgele [ oo

¥ T Pl (med 3), Thow Fobig &) (3) = 37

Lo T Tobiglp () T4z, 347, The
Pk (3R 37 ¥z = N2
Fob , 0 (3%12) < il O R Gk P
b 78 Ryl () OR): 1T, the
Pobise (p (5¥2)= 3* 97
Folig (o) (3920 302

I either cose Frvlqm (?3 if a D~cvc,l2 i+ P>;2, (mod 3) ,

[‘C—D'W‘I'QJQMM)OH Exco,l:;“' L e T('CMJAT'OQ, @V&Jﬂm’c\j elie holdi in e UUMWP‘}"OM

of He ekecse for this Cranple ( CACEREN =L +( which may mey up the
T condifim ). We wastto Ty b ol o Tuit xe® sk that
(x,-10, = -l xAaw,=~1, X%, =].
As x i & T-unt x=t2T°. Bd (Kl9,=-l, & x==-2'7",
Observe hou Hat N= NQ(M';@:(Q(FM) co,\/ws (@j)‘) and
meN , 2¢@V . Hea 7=l eN. the isgles, by 2.4 that



(x, ), = 1,714, = (%) o5 St {2,00) any SEN=S.

= -1 o+ 1

78 Con‘h’kdi c,'ion .

[—XQ A, lew««;l Let ae A such +het T (a)e T, (4) Hr all v Jhee
Tox= T Agn - Ter . Pd o rpredaden Bek) & o The,
& T e T, (Ao), fom”y Vo e L=k (Mo, -Na,) 4 ol v'lv, veT

NOU,{Q‘-{—’ M‘—L("ﬁ\ We ”an“’ n SLou M=L LD(M”:, one ka.,r‘-

o i veT! then Mzl Bral wlv s Negpr(MI)=L

o i WT Hee v wram;ﬁ“eql/ S Nwi ('@J)=Of B v .
Ty To= U Jir ¢ U Ny (), and by clan Aell ey
Gal (ML) > I'/L"NWLU“) =

Hem:g M:L, om.J Mﬁ € L TLUj .IM,PL'&;( ac Ao.

[?rwmg exerasej Defin  f+ X — M by F((‘Xv}% <(Xv),(0(v)>.

T we donole A‘: SuLﬂreU-P 3@.4:,4&-&! L'J Zv(a() for all VvV, e PPOLIQM

i redved v Gan hed xe A sud Hat (x,—>']A‘: #(-)lA'.

@y above Anh = Ao, and £ i tovial o AL by condibm () Sina

Ai_f) Ho""(X/A/ Jar) Lﬂ He efxp[o/\a:liw\ 4 iy exerwie, it suffes o show

i, exiidene of Some g€ Hom (X, Mw)  with 9,A5l and SIAIE HA‘



A Aan A = Ao, one J,a-pme,; '5 on 'H'C 8\4195'0“? AA ¢ X
Prﬂaseb [ga glA—‘ | and %]A' -:—‘-HA‘. Tren '5’ con bt erfeded
o 9 by te {;llowiz\:j clam.

C(g(_lt: T+ & it a Lok oabelian M~ Torsion grou
H o sulpog of G

The res : Hom[&-,/um) — Hom (H’}AM) if & Suf:)éc:;l{on-
Pk Obere  How (6, 00« Hom(6,0%)  gud Swilacy e H.

. ¢
T]'\us | 3%\ 7 l'\w"tf’MéTj)L\fdm H — ¢ = G—L,((f,)l SiMPl-l

Congider "’L(_ indwetion LJ&C@ G - G/Lh(}ﬁ’ —Qllowe,J L:,
PYOJ‘QC{-ior\ t G’L,(,Ct) '

o



_ .
® Y, z | ('\}‘,,: K,— G is Sugec};ve)
& () K NVKJL L,j clage field 'H\e‘,U
Clogs Reld tlepey ol wr Het wom Uz ©7 oy e inech
grwp I, = Gt( L/ L") | Hene
vV s ‘A?\FGM?&EJ N L S (\k’l(of 3‘

(=) ';{,(uv) < {Q('*L/tt K*NVpJL .

By WL.5.1, e Hilbed chis feld ( unrmified ot ol nvordincdian phas
and sFI:’,n co»«fileklj ot He ackimedron on&;) is te Uy feld 4o K j;.,s,

wher Sz Tﬁml«miean. fr:MeJ} and  Jgs t k- Jth O . Als | o 0ing

¢t be He Hllerd class feld, one he

G-Ai Tt ke e
Gl(EA) % TfoT, = e or T k).

F;_'k(‘v\) = Ft’/j:( xe\)

mn
>
s

= (mM) e v\=’vl|'\;v“"‘
Thas [k = #0000 = he ) and He residue oy degree of N arbidary
idea| ® (_ne,cusari\d unicdied in K') 55 dedermined by fhe order of
Fp (m) in Gal CE7O). Thus

n splh COMFlLerj ® Fyplnlsl & 8 & princpal -



Noice Hat, £k i He clas Reld unmamified all all  onecthinedian

P[qwg (wifte ne candition aof if\ﬁt\?%) o Tea szl(t./k:) « T /gt L:) I«:bl:‘-,j

a‘l’ our pr(’xiows t'!owa~-f>\ﬂiJM. H?/\CQ

@\ (k) v RA,

ond T i on abelian 9*3"’“70' Now, observe one has a vop

ks — (Rifpy*)" < R

X — (o3 )
with kool KT and S0 Bfur © B Al ore b by el
anxiMq%A, a  sufection

_R__
Ko

with kvl B Hee  (BFRD) = 27 /(&)

Pe —

Niws fd’ K be « rea’ %W\J{;}i‘, ‘G’"ﬂ[cl (rn=2). Dirichlefl vt —Hnéorevv\ l'mftu'ej
O=& = §H1}x <,
whee € 08 @ ‘RN\J-AM‘}%,’ wet he K. We now have &4 cases -

4 0 ad (D<0 (5 Nw=-1). Tha KsT=<g™s , and
(gs k] =% So CPipt)=[ K, ¥ D= ).

2 Sco and (PO . St a5 above.

= ¢50 and oD >0 (50 N(Hz#). Thee Ks'= <9y, 80 (s 1653=2
and LB = 2.

5 €O and O(D<O. Sam ar aboe .



[EXFI(C& Exaw?}es) Lef w (:OMF\AJ* K' fr Ale fict five 1maginacy

quodatic feld R(Fs), O(FF), 008, RUL), ©GH) -

withowt wsing M 'qumj . Obsene e i/‘ﬁm’/“) P(m ark R[WAJS Unrzmfied.

(a) ](-; @C\F—eg) We Q}aim K,: K(ﬁ) OLKW k’;#CE') H&'IQ Lj
Cummer Hheory A diidee Lol 273 and 25 implying  Apr 20 Thus
we jut need o cled: V|2 i Unmmﬁtieca’- But 3= )4l o |+ Ac, ‘(’qhtj

Az )-ED= 2 herce LU 2.2 Kl s unamibed ot o v{l.

t) K= ®OF) We cam  K'= K(F). Again Ay [ 2" We have

!

/ K \@th e Vil .
QRE) Q)
Qz,“-.'):\ @ /eztl

To see &= hr vit, odserve K= QUFY(I5) and 5= [+ 2°() | Se

Ly 212 K'/e@y s wnasified oF ol v]2Z. T be E/OW) ho

Hus rm?grLj as well.

(C) K:@C‘F_Z"E) Consider -H"e rbo‘h XXz, X3 O'p Xg"X"l . Sing i J,i!(p;m;/mm(-
i =23 ke Galoid group 1l S (23 s mot a S%ware) C Thas
k'= QUF) (x, %, %)< K(x).

Sine 23z T (xi=x), f o prim o in K saisfs PA23, the,

i

X$_X_( o shll ge,fvmuc Ped ®, 50 P i unanclsed in K'lk, We now



Conside, prives vlb\‘r\j ovee Q3 Lt B e ove 5 i K
Ond Conside, K’/ O - The derinbve  3x-| of x-x= hou

¢ ot wed 23, Sine 22| (wd 23) & X = ¢ (wd 23) and

S U oa t;(wc\m"’fé s wod 23, Hew X'-x= has @ smfle.

rost in 4% imf)\j\‘nj He exidene oF a rot i @iy Lj Hearels Lownra,

Thy  rodt W +Lt- jM1Age oF Some X in ®u , So
'K%;‘:@u(\/:fg,x:)‘@u(\pj) has d‘{)*@el*ﬂf@r Q; -
That egm -PWU = . Bst eB/t’s >72 sine 23: TTQ‘, ‘V‘J)x , o

vt}

63/23 = 2 A’_So e?/u =0 | Sine P , Ak/d} . Tl'\ud e'B/,P = | , o(nc(

B o unawited e P, i'\f(‘j;nﬁ k'/k s te Hilled dowr feld of |,

) SQimilar 6 (.

() Sclar & (.

)

&



Le (. Clear . @

4.2, Clear

4.3 @) Soppoie £ preeh 00 TL b e(kM then K(fD): K, so
Ce Newy (W) = k% 4 dear. T Lk’ thea by &2

£(X,Y,0) does not refmed' O <o Her wnud exit xyz

with z2#D suck tat XZ'LUL=CZL-'-‘> C= (é)z' E(%‘)L~
© IF o x-bp He HAXED) =0 ad F represests O .
By Sludion ':" e exercise

bs. By &3 f: xR LVt rpueh O e K H ¢ il o pom
o KoCIB) o Bt by 2% i 0 (), =),

Hence{ oy Che) =l for all ve SC,e) by 23, Chezl Pr almat all v .

We a~ CO'V‘-J?(JSZ{T/&j YV\:?., So CL,c)vefj:l}, @D e PmJMCJ ')Qrmu,lq/ Here mugt
be an @ven pumber of Vv for vhidh  (be), # (-

o b Fox=by -zt acTh,

SWPPW' £ does not Nfredew+ 0 in k.
+ Tf ae(t) He 00,600, o oadlky)*

& Tf be(R) thee F(R.Lo0=20, 50 be(l))"

-+ By g, CFN.(K&E)’/@) ad  cg¢ NCEG/E) -



@

o We now ned B sk KO KUE) ad abe(l'. Sina
QLECk:)", by Clan Feld teon N(BIRY/p) has index 2
in k¥ sine Gl(RGDA) = B (ad cinlerly B ((E)).
Sinee €& N[ KGR /L),

ks NBWA) u o N(hW7rs)

Also N(I(EYA") a ¢ N(KLBI/) = @ by &G, So
N(kv(n)ﬁ/ry) C N(K\,(Jﬁ)"/b) , aml .ﬁ\i\[ 1 aa caua[f#:] LJ
what it ditcuged albove. )QU 26 (Pmpo.fi#a% 3)} s l'MPl;e.r

LUa» L) T india abe(ky):

New suppe o, Le()) abeks, ¢ ¢ N= NOGGEYA)- N(KBI/)
Thea , wrie £z Xuby's ¢ (Z=aTt) ere sus Hat He gof of eleneh
MP(’C&QV\‘L@J LD £ i IN-eN)u N (-eN) . As ceN o one hos N and N

dojoint, and £ dees rof represent O in K,

Ly Unde tese condition, Suppse. A# B whee A= QNNen)a Nuony.

I+ - €N, Then “CN=zecN , % cNvunN cA , @& Con'h’llc[q'(,‘,‘fm (ue.
Q[NAJAJ S\qoweé 'Hm“' ’Cvx‘ NUcN)‘ QO ~| ¢ N

Sine ~1¢ N Oé¢NtV, so (N+N)c K= N o eN. TF cneNn
for some ne N thea  cNc NeN, Alss -cN q‘_c!\l_(elu -leN),

i"\flait\j N(\C‘CN)#¢ ond -ceN > -eN=z=N. Herw Ni’N:N*CN,



QAJ <N ¢ N+N= N-cN < A , * C,on"l’?ﬂcL'c‘th (‘F‘Dr "H\A"’ LJI'" @
]MP\J A: K\,’) T[MH eNAQvsN) = qﬁ' and N+N ¢ N -

Ffmll) (?,'l' w SLo'w 'fLa+ f I‘{/f)m.!&"j ?J\/Q»O dwew,, in kvx , anleys tv"\iIK
cnd -ﬁ 1§ Poi(—'f"ivc &uqn.k |

[ fucks fell | To A% K Ha NiNen. Herw | ar leN

/)
p-le N | whe p=xchyk, Bt Thit pugn, -leN, a codudicion .

\K Avkm b ﬁdi} Suﬂmc Kv/@P v nenarchiredoan . TL%' Jrit [ike above

{—-H Ph}/\;; cN. A N i cfoed ik indoy ond open impley cloed)

and  =ltpt = =] tha iwpl:ea de N, a catrdidion
F K,=¢, clealy “eN o 70({,0,0,0):-(.

Tf Kv 5‘2, +L€&~ 'F‘ Cﬁlu\o‘l‘ Le Y\fﬂjﬂk"( dﬁ’le'!‘hik w 7[:0,0,00) 50 .
TP £ s rondefinbe then F tpreeh R and i F P pasitive defniie |
Hen £ V‘QPN.J{Ah lRf, :

). TE k=Rt F orepraedh O i # i not defide (clead) S
ld v be roveal It sbfes b oaoue £ ohy § varables. e
£2 oa X+ o (% Xy %)
T 46 tell w 9 el mprm O o KV . Tn it femer Case
we are done (Lot % =0). Tn th later @e, 9 wi veprejent 4, and

ve ae alo dore (leF X=1) -



th.. Trivial &
=) webe F2 x= Lt ad sugoe £ orgreed O in ed K,
Lt L=1c(@). Then, by %3, L =K, foral v. By
e botares lety Heorew | tho dewily f primy v Hhat spli Complefel,

| 2
H ML) . Bt i e?)w.l; l, So KUp)=K and EGLKX)

85 2, £ MPmS&'b 0 in K.

JE INFite £+ x- Lyl- czt . led [= k(ﬁ) / vk i c‘:’cl{c over K.
(,{;,-,\j b and He Hage orm Thesrem (m.%) ,0ne |y

'(:Mlmmﬁo n K& ce N (1Y)

& C ¢ NLv/kv ((Lv)x) -Fpr‘ all Vv GZk
S F M O in K Rl ved,

Wr'k _F: xl- 5‘17__ CZ.L-{- ac—rz/ Q’\A Wr'l'l-i a: Xl_ va‘czt. g‘? L(’. “L,

£ reprieds O in K & g refmob O i~ KQap)
& g repmb 0 in KUa) Hral v ( by qLove)

& £ repr(’.'.w.,\h D in Ko Hr all v-

[n=s] Wrike FaoX e br - g (6,5 %) Whee g hat n-253 vacables
Sugpe T tpeed O in Lo R ol v, By &F y Mpraeh D " b fir



all v owhbide o fate @b S D
b Lk veS. A f rpedh 0 in k, , Hea embh X X, e by
not all 2emw guch Hat axZ«lx.y = §(X,v,-, %), Sine
UCJC)'L i oopen in kS, g(EF, kf) it open By weak ﬁfpaxiM'}io/\/
Ao exith X, X €K Suck et Axt L% i s‘aﬁ#aeaﬂj che to
Ot b¥oy B all veS. As g de ast rpreet O in o, veS,
eacl. X5t bXy ¥ aoneo. Heaw we can firtle apume that

Gxreby € g(krf, o, k) foral veS. Weibng c ot L
this means C i re?rae.«kl by 9 in K& fcall veS:
Ly For vé S, 9 VQPNJG»\"? D ia K"/ hea Le ysefre‘;e“-h C.
gﬁ indction, ¢ S 9 (%, -, X.) represes O in K ((since
Pepme.«b 0 in K fr al y)- Thws  F rcpr@e»\)n O, Ar
Ve g%, %)= A (X b (0Y) =g (s, %)

Wl X, &lre,,c% chosen (ami we chooi  appropriafe Y, Xy, -, Y ot al]

Zom Y make sue the above %wclrﬂvl AT VA/\]JLu).

49. Et) s, ‘p' foﬂen"? O s K & = refrese/ch O w kK Qr all v .
& ’F [ Y\OAJ,O.QAH{ a\'{" reml P\GOZJ v LD 11('7



10, B 44, ce® i rpreedd b X4y 42t in G i &

£ XeygheTt mpr@e«ﬁ O in eack of d?f- asd K.

We Pe%w'»e 1C To  be nonimﬁule, ﬁra:«j c>D .
Hee  (ps | o pé SED=8x T2} o |, 23

V)

(—l'—')r = (:,'a‘) = |

Ths by 4y, (-~ - 00 Xy represent O

[E Define Hj = xe (D’;/( v (xa), s £y br ge T£1} . T,
\"G"‘&A«J by 2.6 Sne]
£ repre TS O w b @) N(RMY) |

) ;er’ X Nprewnki by xlﬂ‘] n ;m O,: X rcpreJeAQJ by ~(z‘-c‘rl)}¢¢

(=) ; st: xl+32: X WL rtfme,ﬂh 0} n g X& Q : zl-CTl-rwa vaesexb o} + {)
13

&) ;xe@b‘. ("',lef} n }‘X&Qa. : (C,'X)ztl} ¥ ?5

@ Hl\ o\ H(:_“l :ﬁ é'

We now +r\3 '(-o Uv\dushual Hz LQ'H-ér
It as] i O7fQnt, the FH, =8 ad #Hi:0

> Supoe ot] in BF/00Y T by loal clas fiell tey
Nq: N(Q;_(.R?) L.0-5 in&y -(-WO in @3" TL\VLJ, ij 2.%)

Haz Na and H: = (the otter cwed of Q{/Nq , iNLPlbif\.j
AR - BWI 4 HOAH < 6.



\ o
Obene tt F aza' ten HooHE #0 Thu &)

. o=a' and €=-¢'
¢ < & )
Ho n HA' = ¢ r 7 r. - ’
O =l and €=~ Cor o= and gE~).
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