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Abstract

This short expository note consists of two interconnected parts. The first part highlights some number-
theoretic properties of the function field ring of integers Fq[θ]. The second part gives an overview of the
Carlitz ζ-function, which is the function field analog of the Riemann ζ-function.

Everything here has analogs in the number field setting; see [3] for such a reference.

1 Fq[θ] is Level

Let q be a power of a prime p. Then the ring A = Fq[θ] is the polynomial ring in θ with coefficients lying in
the finite field Fq. This is the ring of integers for the function field k = Fq(θ).

The purpose of the first section is to give quick proofs of the function field abc-Conjecture and Prime
Number Theorem. Most of the exposition surrounding the abc-Conjecture is based on [1].

Theorem 1 (abc-Conjecture). Let a, b, c ∈ A be coprime and satisfying the following conditions:
• a+ b = c;
• if the factorization of c over Fq has a factor of degree dividing p, then both a, b has no factors of degree

dividing p over Fq;
• if the factorization of a or b over Fq has a factor of degree dividing p, then c has no factors of degree

dividing p over Fq.
If abc has exactly k distinct zeros in Fq, then the degrees of each of the polynomials a, b, c cannot exceed k−1.

The abc-Conjecture is false is we remove the assumption of divisibility of factors; see Davenport’s Theorem
below for a counterexample when 3 divides q.

Proof of abc-Conjecture. Let f = a/c and g = b/c. Then f + g = 1 and f ′ = −g′ by assumption. Now write

a = u
∏
α

(x− α)rα , b = v
∏
β

(x− β)sβ , c = w
∏
γ

(x− γ)tγ ,

where u, v, w ∈ F×q , and α, β, γ are the roots of a, b, c. Because a, b, c are coprime, these roots are all distinct.
Also, a computation reveals

f ′

f
=
∑
α

rα
x− α

−
∑
γ

tγ
x− γ

;

g′

g
=
∑
β

sβ
x− β

−
∑
γ

tγ
x− γ

.

By assumption, none of the two expressions above are zero. Hence, if we define

h =
∏
α

(x− α)
∏
β

(x− β)
∏
γ

(x− γ),

then h is a degree k polynomial, and the functions

φ =
hf ′

f
, ψ =

hg′

g
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are polynomials of degrees at most k − 1. Now, the relation f ′ = −g′ gives

bψ = aφ,

and we are done as a and b are coprime, and c = a+ b.

Example 2 (Fermat’s Last Theorem). The abc-Conjecture gives a quick proof of the nonexistence of solu-
tions to

fn + gn = hn, f, g, h ∈ A,

for n ≥ 3 and p - n. If there were such a solution, then we can assume f, g, h are coprime. Hence, the
abc-Conjecture implies

ndeg f ≤ deg f + deg g + deg h− 1,

and similarly by replacing the left hand side with ndeg g and ndeg h. Hence, by summing the three inequal-
ities,

n(deg f + deg g + deg h) ≤ deg f + deg g + deg h− 1,

and this is only possible when n ≤ 3. Note that the existence of solutions is trivial for n = 1, and for n = 2
such a solution is given by

f = x2 − 1, g = 2x, h = x2 + 1.

Note that this looks a lot like the rational Pythagorean triples. In fact, the argument over there applies here
to show that all (primitive) Pythagorean triples in our case are of the form

f = c(u2 − v2), g = 2uv, h = c(u2 + v2),

where c ∈ F×q and u, v ∈ A are relatively prime.

Example 3 (Davenport’s Theorem). Davenport’s Theorem is the following statement: If 3 - q, and f and
g are coprime nonconstant polynomials, then

deg(f3 − g2) ≥ deg f

2
+ 1.

Note that this bound cannot be improved since equality is attained with f = x2 + 2 and g = x3 + 3x, giving
f3 − g2 = 3x2 + 8. (This example also tells us the above inequality is false if 3 divides q.)

In order to prove Davenport’s Theorem, first note that the inequality is trivial if deg f3 6= deg g2, so we
can assume deg f3 = deg g2. Let deg f = 2m and deg g = 3m. Now

(f3 − g2) + g2 = f3,

and the terms are pairwise coprime by assumption. Also, the zeros of (f3 − g2)g2f3 cannot exceed the sum
deg(f3 − g2) + deg g + deg f . Thus, by the abc-Conjecture,

deg g2 ≤ deg(f3 − g2) + deg g + deg f − 1,

implying

deg(f3 − g2) ≥ m+ 1 =
deg f

2
+ 1,

as desired.

There are other applications of the abc-Conjecture (e.g. Catalan’s Equation), and computations of some
solutions to Pell’s Equations, in [1]. One can also find more information about Pell’s Equation for polynomials
in the literature (we can solve this just like in the classical case).

We next prove the Prime Number Theorem. This is so named as it looks like the classical version:

qn

n
=

x

logq x
, where x = qn.
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Theorem 4 (Prime Number Theorem). Let Nn be the number of monic irreducible polynomials of degree
n. Then

Nn ∼
qn

n
.

Proof. Let F = Fqn . Then every nonzero element in F is the root of a monic irreducible polynomial of
degree dividing n, and so

qn = |F | =
∑
d|n

dNd.

Now, applying Möbius inversion to the functions A(d) = qd and B(d) = dNd, one gets

nNn =
∑
d|n

µ
(n
d

)
qd,

where µ is the Möbius function. We are now done by a trivial bound.

Note that, by studying the proofs, the abc-Conjecture actually holds for all polynomial rings over a field,
but not the Prime Number Theorem.

2 ζ is You; Li is Win

The second section will focus on the big picture, and is intentionally vague to avoid details. See [2] and the
references there for some details (many more references are needed for full details).

As hinted in the title of this section, we can define a function field version of the Riemann ζ-value, called
the Carlitz ζ-value, by

ζ(n) =
∑
a∈A+

1

an
, n ∈ Z≥1.

Here A+ is the set of monic polynomials in Fq[θ], and ζ(n) is an element in k∞ = Fq(( 1
θ )), the completion of

k at the infinite place of A. This ζ-value enjoys a number of good properties; for example, it is convergent
on the stated interval (using the absolute value |θ| = q on k∞), and there is still an Euler factor expansion

ζ(n) =
∏

p monic irreducible

1

1− p−n
.

However, we still do not know if we can analytically continue this, nor do we know of a functional equation!
This is in contrast to the case of the Riemann ζ-function.

Remark. Of course, we can generalize the above to multizeta values, but we will not do that in this talk
for simplicity. One way to guess for the definition of the multizeta values is to compute ζ(n)ζ(m) and derive
a shuffle relation via the inclusion-exclusion principle.

Note that the definition of the Carlitz ζ-value is defined over the sum of all monic polynomials. Why
do we not sum over all polynomials? A reason is to preserve the analogy with the Riemann ζ-value. Recall
in this classical case we took the sum over all positive integers. This is half of the nonzero elements in the
ring of integers Z, and an interpretation is that we took a representative among the nonzero integers with
relation defined by Z× = {±1}. Similarly, in the function field case, we pick a representative among the
nonzero polynomials with relation defined by Fq[θ]× = F×q , giving rise to our definition of ζ(n).

Here is another simpler reason for this definition: since

∑
c∈F×

q

ck =

{
0 if q − 1 - k
−1 if q − 1|k

the sum
∑
a∈A a

−n will be a terrible definition for ζ(n)!
Because of the sum above, we define a positive integer n to be “even” if it divides q − 1, and “odd”

otherwise. Then Carlitz did the following computation.
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Proposition 5. For any “even” positive integer s,

ζ(s) =
Bs

Γs+1
π̃s,

where Bs and Γs+1 are the function field Bernoulli and Gamma numbers, and π̃ is the Carlitz period. �

The number π̃ is the function field analog of π, and is an element in the algebraic closure of k∞. The
definition comes from considering the kernel of the exponential map of the Carlitz module (which is a Drinfeld
module). Similarly, Bs and Γs+1 are defined by a power series expansion using this exponential map.

Just as in the number field case, the values ζ(n) for n “odd” seems hard to compute. If we play around
the values ζ(n), it is easy to get

ζ(pn) = ζ(n)p,

but it seems like we can’t write more down. We now have a basic question on ζ-values: can we understand
all the algebraic relations between the values ζ(n)? This question is notoriously difficult in the number field
case (for example, we don’t even know if ζR(3) is transcendental), but we have a complete answer for this
in the function field case!

Theorem 6. Each of the values ζ(1), ζ(2), . . . is transcendental over k. Furthermore, the set

{π̃, ζ(n) : q − 1 - n and p - n}

is algebraically independent over k, and all algebraic relations between the values ζ(1), ζ(2), . . . are generated
by the relations {

ζ(s) =
Bs

Γs+1
π̃s : q − 1|s

}
∪ {ζ(pl) = ζ(l)p : l ∈ Z≥1} . �

The proof of this uses the period interpretation of the Carlitz ζ-value. This is the correct way to think
about this, and there are two reasons: correct analogy with the number field case, and allows generalization
to multizeta values (for example, to be able to use in my thesis work). Without going into any details, here
are the steps to proving the Theorem.

(1) Construct a function field analog of the polylogarithm, and write ζ(n) as a k-linear combination of
these polylogarithms.

(2) Realize the polylogarithms and ζ-values as periods of uniformizable t-motives (those arising from
successive extensions of tensor products of the Carlitz module).

(3) Study the motivic Galois group of these t-motives (which exists by Tannakian formalism) using differ-
ence equations, and relate this group to algebraic independence of polylogarithms.

(4) Show how this implies algebraic independence of the ζ-values.
(5) Using known algebraic relations, show how all these steps imply the Theorem above.

Remark. For multizeta values, the expectation is that a similar theorem should hold for all ζ(s1, . . . , sr)
with each si not divisible by q− 1 and p. However, although we can still prove transcendence, we have only
been able to prove algebraic independence for arbitrarily large families of them. This is due to the difficulty
of the last two steps above, and the existence of many non-trivial relations between multizeta values.

Final Thoughts

The slogan is that many familiar notions in analysis and geometry usually carry over to the function field
setting, though it seems to be more algebraic and combinatorial in nature. It is also usually easier to work
with function fields than number fields. Here is a list of things hinted throughout the talk.
• Analysis: nonarchimedean analysis (e.g. rigid analytic functions, Fourier series, Hadamard products)
• Geometry: Drinfeld modules, t-motives, comparison theorems, rigid analytic spaces
• Special Functions: logarithms, multizeta values, modular forms
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