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Abstract

The Atkinson index is a measure of income inequality, �rst de�ned in 1970

by invoking the idea of Equally Distributed Equivalent (EDE), i.e. the level of

income that, if equally distributed in a hypothetical scenario, would give the

same level of welfare as the current income distribution. Using functional ana-

lytic techniques with an L-function viewpoint, we reinterpret the Atkinson index

as a harmonic-like weighted sum. This allows us to derive a duality principle on

inequality that, among other things, implies minimizing poverty is equivalent

to maximizing wealth at inequality aversion parameter ϵ = 2. Furthermore, our

reinterpretation allows us to use the Riesz-Fréchet Representation Theorem to

broaden on the Pigou-Dalton Principle for EDE. We also explain an application

to estimate the optimality of resource allocation towards achieving maximal

welfare under equity considerations.

JEL classi�cation: C65; D63; I14
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1 Introduction

Many measures exist to estimate population inequality in both economics and health

[3], with the Gini index being the most famous. However, a good measure for inequal-

ity analyses should satisfy three important properties [7]: subgroup decomposability,

where total inequality is divided into its constituent components; the Pigou-Dalton

Principle, where a transfer of a desirable variable (e.g. wealth) from the rich to the

poor results in less inequality as long as it does not bring the rich to a worse situation

than the poor; and avoids value judgement, for instance by including an explicit pa-

rameter that changes the weights placed on various percentiles of the distribution (to

allow sensitivity analysis with respect to this parameter for policy decisions). Using

this de�nition of goodness, the Gini index does not qualify as a good measure for

inequality analyses as it does not avoid value judgement. Rather, a detailed analysis

of inequality measures (by the same paper [7]) concluded that the Atkinson index

[1] stands out as the best inequality measure in health. Additionally, a quantitative

analysis of income inequality measures by Shorrocks imply the generalized entropy

index [11, Equation 31] is the only one-parameter family that is subgroup decompos-

able under relatively weak restrictions on homogeneity, and the generalized entropy

index can be viewed as a monotonic transformation of the Atkinson index. As such,

we focus on the Atkinson index in this paper.

Atkinson de�ned his index in [1] by invoking the idea of Equally Distributed

Equivalent (EDE), re�ecting the willingness to trade o� aggregate bene�ts for income

to be more equally distributed. This index is de�ned on the real line as

EDE(ϵ) :=



(∑
i

H1−ϵ
i µi

) 1
1−ϵ

ϵ ̸= 1

∏
i

Hµi

i ϵ = 1

(1)

where Hi is the income level for subgroup i with each Hi distinct and nonzero, µi is

a weight for subgroup i (with the sum of all µi equaling 1), and ϵ is the Atkinson in-

equality aversion parameter. The weights µi are chosen depending on the application.

In Atkinson's original formulation, µi is simply the proportion of the total population

at income level Hi, but µi can also be income-dependent, causality-dependent, and

so on [10].
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Our de�nition of EDE(ϵ) is the non-normalized form of the de�nition given by

Atkinson. Also, instead of restricting ϵ to be strictly non-negative, we allow use of

the entire real line as it gives rise to a duality principle (Duality Principle 5.1) with

important applications in both economics and health.

The goal of this paper is to understand the Atkinson index as weighted sums of

the income levels Hi. In order to agree with the original work of Atkinson, such

a weighted sum has to give greater weight to lowest income at higher inequality

aversion ϵ, implying that the weighted sum needs to be harmonic-like as it emphasizes

sensitivity to low-income groups. Temporarily suppose ϵ > 2 and abstractly consider

the sum

AH(ϵ) :=

(∑
i

1

Hi

fi,ϵµi

)−1

where fi,ϵ are non-negative functions in ϵ to be determined. We will show the existence

of unique fi,ϵ's minimizing AH(ϵ) with respect to a technical constraint (Theorem

2.1). Furthermore, this minimum value coincides with the Atkinson index EDE(ϵ).

For ϵ < 2, we will show that AH(ϵ) can be analytically continued to the entire real

line except for a removable singularity at ϵ = 1. This implies the initial supposition

of ϵ > 2 can be lifted, and AH(ϵ) gives a way to decompose EDE(ϵ) into subgroup

components for all values of ϵ.

The decomposition of the Atkinson index into AH(ϵ) will be proven in Section

2. Following this, we demonstrate how our techniques broaden on the Pigou-Dalton

Principle for the Atkinson index, as well as giving greater subgroup-level insights in

EDE weighting of subgroups (Section 3). We then illustrate a use of our decomposi-

tion in the context of resource allocation (Section 4), before ending with an important

duality principle that uni�es opposite metrics such as wealth and poverty (Section

5). Our duality principle is derived by showing that the harmonic-like sum AH(ϵ) is

transformed into an arithmetic-like sum at ϵ ≤ 0, vastly generalizing a recent obser-

vation of Sterck [16] that minimizing overall poverty level is equivalent to maximizing

EDE income at ϵ = 2.

2 Functional analysis on Atkinson's index

The de�nition of Atkinson's index is a little opaque for subgroup-level analyses at �rst

glance. For instance, it does not inform us how the Hi's are di�erentially weighted
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at certain Atkinson parameter ϵ. While Shorrocks performed a subgroup decompo-

sition on the Atkinson index into an arithmetic-like sum to obtain subgroup-level

information [11, 12], we decompose EDE(ϵ) in an alternative way as a harmonic-like

sum

EDE(ϵ) =

(∑
i

1

Hi

fi,ϵµi

)−1

for a family of functions fi,ϵ in ϵ and depending on Hi and µi. These functions

fi,ϵ are uniquely determined, and an expression can be derived by performing partial

di�erentiation with respect to Hi. However, partial di�erentiation does not give much

insight beyond the work done by Shorrocks in his analysis. In particular, Shorrocks

mentioned that his analog of fi,ϵµi cannot be reasonably considered to be weights, as

their sum over the subgroups does not equal 1 in general.

It is worth mentioning that our proposed sum is harmonic-like while Shorrocks

used an arithmetic-like sum in his analysis. We believe a harmonic-like sum is more

appropriate as the Atkinson index is more sensitive to lower income subgroups as ϵ

increases, which is re�ected in an harmonic-like sum (but not an arithmetic-like sum).

However, arithmetic-like sums do come in play in our analysis as they will be essential

when considering negative metrics such as poverty level (Section 5).

We now list some basic properties of the Atkinson index EDE(ϵ) (Equation 1)

that is almost immediate from de�nition. EDE(ϵ) gives increasingly greater weight

to the subgroup with lowest income as ϵ increases, and is a monotonic decreasing

function in ϵ. In particular, EDE(ϵ) plateaus to the minimum income level among

the subgroups as ϵ increases, and plateaus to the maximum income level among the

subgroups as ϵ decreases. Further, by de�nition of the utility function for Atkinson's

index

U(x) =
x1−ϵ

1− ϵ

and its concavity, the Atkinson index satis�es the main properties of social wel-

fare measures, such as income homogeneity, population homogeneity, and the Pigou-

Dalton Principle [1, 11]. These three properties will also be elaborated on in the next

Section.

The purpose of this section is to prove the following mathematical results. For con-

venience in the arguments, these results are formulated as the inverse of the Atkinson

index as stated in Equation 1.
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Theorem 2.1. Let ϵ > 2, let p = ϵ−1, and let q be the number such that 1/p+1/q = 1.

Then there exist a unique collection of non-negative values fi,ϵ satisfying∑
i

f q
i,ϵµi = 1,

and such that these fi,ϵ maximizes the expression

F (fi,ϵ) :=
∑
i

fi,ϵµi

Hi

.

Furthermore, this maximum value equals EDE(ϵ)−1.

Corollary 2.2. The values fi,ϵ in Theorem 2.1 can be explicitly determined:

fi,ϵ :=

(∑
j

(
Hj

Hi

)1−ϵ

µj

)−(1+ 1
1−ϵ)

=

(
EDE(ϵ)

Hi

)ϵ−2

.

This can be viewed as an analytic function at ϵ ̸= 1.

Theorem 2.3. Let ϵ > 2. Suppose q > 1 is a number satisfying the following two

conditions.

� There exists unique values fi > 0 such that∑
i

f q
i µi = 1

and fi maximizes the expression

F (ai) :=
∑
i

1

Hi

aiµi.

� F (fi) equals EDE(ϵ)−1, where fi is speci�ed in the above condition.

Then q is unique, and equals the value in Theorem 2.1.

Theorem 2.4 (Analytic Continuation). Let q be as de�ned in Theorem 2.1. Consider
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the real-valued function

L(Hi, ϵ) := max∑
i f

q
i,ϵµi=1

fi≥0

{∑
i

fi,ϵµi

Hi

}

which is well-de�ned on ϵ > 2 by Theorem 2.3. Then L(Hi, ϵ) can be analytically con-

tinued to the entire real line, except for a removable singularity at ϵ = 1. Furthermore,

L(Hi, ϵ) is a positive function with L(Hi, ϵ) = EDE(ϵ)−1.

Theorem 2.5 (Functional Equation). The function L(Hi, ϵ) de�ned in Theorem 2.4

satis�es

L(Hi,−ϵ)−1 = L(H−1
i , 2 + ϵ).

In summary, the �ve mathematical statements above narrate the following story.

Theorem 2.1 gives a mathematical justi�cation that a harmonic-like decomposition

for the Atkinson index at ϵ > 2 is in fact robust. Corollary 2.2 explicitly de�nes the

components fi,ϵ of the harmonic-like decomposition. Theorem 2.3 tells us that the

technical condition imposed on fi,ϵ allows us to deform Atkinson weights in a well-

de�ned manner as ϵ varies, and is the only sensible deformation that naturally extends

Atkinson weights as ϵ varies. In particular, this Theorem shows our de�nition of EDE-

factors in the next Section makes sense (De�nition 3.1). Theorem 2.4 mathematically

justi�es our harmonic-like decomposition agrees with the Atkinson index at all ϵ

(not just ϵ > 2). Finally, Theorem 2.5 exhibits a dual pairing on the harmonic-like

decomposition that results in a duality principle that will be explained in Section 5

(Duality Principle 5.1).

Proof of Theorem 2.1. Let X be a countable measure space with discrete probabil-

ity measure µ, and let F be an injective real-valued positive Lebesgue-measurable

function on X. Then the p-norm of F is simply

∥F∥p =

(∑
i

F p
i µi

) 1
p

.

In our case where Fi = 1/Hi,

∥F∥p =

(∑
i

H−p
i µi

) 1
p

.
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By the Riesz-Fréchet Representation Theorem for Lp-spaces [15, Chapter 1], there

exist non-negative values fi such that

∥F∥p = max∑
i f

q
i µi≤1

fi≥0

{∑
i

1

Hi

fiµi

}
,

where q is the number such that 1/p + 1/q = 1. If we can �nd values fi for this

equality to hold, then we are done as the left-hand side ∥F∥p equals EDE(ϵ)−1 after

recalling p = ϵ− 1.

Following this discussion, we need to solve an optimization problem: Find numbers

fi ≥ 0 that maximizes ∑
i

1

Hi

fiµi (2)

subject to the condition ∑
i

f q
i µi = l, 0 ≤ l ≤ 1. (3)

Clearly, fi cannot be simultaneously zero for all i. Using Lagrange Multipliers, there

exist a constant λl depending on l such that

1

Hi

µi = λlqf
q−1
i µi.

Hence

fi =

(
1

λlqHi

) 1
q−1

.

Substituting fi to Equations 2 and 3 gives

∑
i

1

Hi

fiµi = λ
− 1

q−1

l

∑
i

(
1

qHq
i

) 1
q−1

µi

and

λ
− 1

q−1

l = l
1

q−1

(∑
i

(
1

qHi

) q
q−1

µi

)− 1
q

Since q,Hi, µi are all known constants, to maximize Equation 2, we will need to max-

imize λ
− 1

q−1

l , which requires maximizing l
1

q−1 , and this last expression is an increasing
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function on l as q− 1 > 0. Therefore, necessarily l = 1 for our optimization problem.

In summary, for each fi,

fi =

(
1

λ1qHi

) 1
q−1

=

(
1

qHi

) 1
q−1

(∑
j

(
1

qHj

) q
q−1

µj

)− 1
q

=

(∑
j

(
Hi

Hj

) q
q−1

µj

)− 1
q

. (4)

These fi's are exactly the fi,ϵ we seek.

Proof of Corollary 2.2. This is an algebraic manipulation of Equation 4 to rewrite it

into two di�erent ways.

Proof of Theorem 2.3. By manipulating Equation 4,

fi =

(
EDE(k)

Hi

)− 1
q−1

, k = 2 +
1

q − 1
.

Therefore, we can view

H(q) :=
∑
i

1

Hi

fiµi

as a function in q. To prove the Theorem, it su�ces to show that this function is

monotone decreasing in q. A computation tells us that the derivative with respect to

q is

d

dq
H(q) =

∑
i

1

Hi

f ′
iµi

=
1

(q − 1)2

∑
i

fiµi

Hi

ln

(
EDE(k)

Hi

)
+

1

(q − 1)3

∑
i

fiµi

Hi

EDE ′(k)

EDE(k)

= − 1

q − 1

∑
i

fiµi

Hi

ln(fi) +
1

(q − 1)3

∑
i

fiµi

Hi

EDE ′(k)

EDE(k)
. (5)

Here, EDE ′(k) is the derivative of EDE(k) with respect to q.

We now need to show that the �rst and second term of Equation 5 are both

negative. The second term is negative as EDE ′(k) is the only part of the term that
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is negative:

EDE ′(k) = EDE(k) ·

(
1

(1− k)2

(∑
i

H1−k
i µi

)
+

(∑
i

H−k
i µi

))
· −1

(q − 1)2
.

For the �rst term, note that

∑
i

fiµi

Hi

ln(fi) = ln

(∏
i

f
fiµi
Hi

i

)

so we are reduced to showing that the product inside the logarithm is at least 1.

Using the weighted power mean inequality, more speci�cally the weighted GM-HM

inequality [2, Chapter 3],

∏
i

f
fiµi
Hi

i ≥

(∑i
fiµi

Hi
f−1
i∑

i
fiµi

Hi

)−1


∑
i
fiµi
Hi

. (6)

We now make the observation that∑
i

fiµi

Hi

f−1
i =

∑
i

1

Hi

· 1 · µi

so by the �rst condition in the statement of the Theorem,

∑
i

fiµi

Hi

f−1
i ≤

∑
i

fiµi

Hi

.

Hence the fraction in the right hand side of Equation 6 is at most 1, implying

(∑i
fiµi

Hi
f−1
i∑

i
fiµi

Hi

)−1


∑
i
fiµi
Hi

≥ 1

and we are done.

Proof of Theorem 2.4. Note that both L(Hi, ϵ) and EDE(ϵ)−1 are analytic functions

de�ned on the interval (−∞, 1) ∪ (1,∞). As L(Hi, ϵ) = EDE(ϵ)−1 on (2,∞), the

Identity Theorem [6, Chapter 1] implies they must also be equal on (1,∞).

We now apply the Identity Theorem on (−∞, 1) by showing that L(Hi, 1/n) equals
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EDE(1/n)−1 for all positive integers n ≥ 2. By Corollary 2.2,

L

(
Hi,

1

n

)
=
∑
i

(∑
j

(
Hj

Hi

)1− 1
n

µj

)−1+ 1

1− 1
n µi

Hi

=

(∑
j

H
1− 1

n
j µj

)−(1+ n
n−1)(∑

i

H
1− 1

n
i µi

)

= EDE

(
1

n

)−(1− 1
n)(1+

n
n−1)

EDE

(
1

n

)1− 1
n

= EDE

(
1

n

)−1

,

as desired.

Proof of Theorem 2.5. If ϵ > 0, a calculation reveals

L(H−1
i , 2 + ϵ) =

∑
j

∑
i

Hj

((
Hj

Hi

)−(1+ϵ)

µi

)−(1− 1
1+ϵ)

µj

=

(∑
j

H1+ϵ
j µj

)(∑
i

H1+ϵ
i µi

)−(1− 1
1+ϵ)

=

(∑
i

H1+ϵ
i µi

) 1
1+ϵ

= EDE(−ϵ)

= L(H,−ϵ)−1

where the last equality is due to Theorem 2.1. Finally, the condition ϵ > 0 can be

dropped by the Identity Theorem.

3 EDE-factors

Due to Section 2, the Atkinson index can be decomposed as a harmonic-like sum

EDE(ϵ) =

(∑
i

1

Hi

fi,ϵµi

)−1
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where fi,ϵ is de�ned as

fi,ϵ :=



(∑
j

(
Hj

Hi

)1−ϵ

µj

)−(1+ 1
1−ϵ)

ϵ ̸= 1

∑
j

ln

(
Hj

Hi

)
µj ϵ = 1.

These fi,ϵ satisfy a technical weighted normality condition:

∑
i

f q
i,ϵµi = 1, q =

ϵ− 1

ϵ− 2
,

allowing us to extend Atkinson's weights µi through the expressions f q
i,ϵµi. In other

words, an extension of Atkinson's weights is done via a q-analog of the expression

fi,ϵµi. Such an extension requires agreement with Atkinson's weight without inequal-

ity aversion considerations, i.e. wi(0) = µi. As such, we need to shift ϵ by 1 for this

equality to hold. Note that this is a choice of normalization to recover Atkinson's

weigh at ϵ = 0, and is not something intrintic to inequality aversion itself.

De�nition 3.1. The EDE-factor for subgroup i can be explicitly de�ned in two ways:

wi(ϵ) :=

(∑
j

(
Hj

Hi

)−ϵ

µj

)−1

µi =

(
EDE(ϵ+ 1)

Hi

)ϵ

µi.

Before discussing properties of EDE-factors, we give a simple example of EDE-

factors on two hypothetical policy scenarios.

Example 3.2. Consider a population split into 2 subgroups with equal Atkinson

weights µ1 = µ2 = 0.5 and income levels H1 = $70, 000, H2 = $100, 000. Also

consider two Scenarios: A, where individuals in the lower income subgroup 1 are

given additional $5, 000; and B, where individuals in the higher income subgroup 2

are given additional $20, 000. Then the graphs of the Atkinson index (computing

EDE) and EDE-factors (computed using De�nition 3.1) are graphed below. Our

choice of graphing ϵ between 0 and 20 is deliberate as elicitation of ϵ in health or
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income generally falls in this range [4, 9, 14].

If inequality aversion is not considered, Scenario B results in a higher average income

as four-fold more resources are additionally given compared to Scenario A. However,

a computation of EDE income shows a more rapid decrease, with a tipping point

at ϵtip ≈ 3.37 and EDE(ϵtip) ≈ $84, 500. This is also evident by the EDE-factors,

as Scenario B puts a much higher weight on the lower income subgroup in EDE

computations due to a larger income gap between subgroups.

Immediate properties from functional analysis

From our discussion in the previous Section, clearly the EDE-factors wi(ϵ) are non-

negative and sum to 1 for all ϵ: ∑
i

wi(ϵ) = 1.

At ϵ = 0, this is simply the base case condition that the sum of all µi equal 1. These

EDE-factors can be seen as a spiritual answer to questions raised in [10, 11] on a

method to decompose measures, such as the Atkinson's index, as a simple weighted

sum. We now discuss how EDE-factors generalize most of the homogeneity and

transfer properties in Atkinson's index.

Income homogeneity. By De�nition 3.1, the EDE-factors wi(ϵ) are not a�ected by

a uniform scaling of income levels Hi 7→ kHi for some positive constant k. Thus, by

Theorem 2.4, this implies income homogeneity for Atkinson's index, i.e. EDE(ϵ) is

multiplied by the same constant k under a uniform scaling of income levels.

Population homogeneity. To show that the EDE-factors satisfy population homo-
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geneity, suppose each subgroup i is replicated n times (i, 1), . . . , (i, n) and each repli-

cation is weighted ω1, . . . , ωn, with the ωk's summing to 1. Then H(i,1) = · · · = H(i,n),

and each subgroup (i, η) is weighted µiωη in Atkinson's index. Therefore, its corre-

sponding EDE-factor is

w(i,η)(ϵ) =

(∑
α

∑
j

(
H(j,α)

H(i,η)

)−ϵ

µjωα

)−1

µiωη

=

(∑
j

(
H(j,α)

H(i,η)

)−ϵ

µj

∑
α

ωα

)−1

µiωη

= ωη · wi(ϵ).

As the weights wi(ϵ) are q-analogs of the expression fi,ϵµi,(∑
α

∑
i

1

H(i,α)

f(i,α),ϵµiωα

)−1

=

(∑
i

1

Hi

fi,ϵµi

∑
α

ωα

)−1

=

(∑
i

1

Hi

fi,ϵµi

)−1

= EDE(ϵ)

which proves population homogeneity.

Pigou-Dalton Principle. The Pigou-Dalton Principle is a transfer principle that

asserts any social welfare function must prefer allocations that are more equitable.

Formally, if Hi > Hj, then a transfer of ∆ > 0 from Hi to Hj, in such a way that

Hi −∆ ≥ Hj +∆∗, ∆∗ := ∆
µi

µj

must not decrease EDE(ϵ). This is easily seen to hold for the Atkinson index due to

the concavity of the utility function.

We prove that the Pigou-Dalton Principle is a special case of Theorem 2.1 when

ϵ > 2, though the Theorem cannot be used to prove the Pigou-Dalton Principle at

0 < ϵ < 2. However, this is su�cient to show that Theorem 2.1 generalizes the Pigou-

Dalton Principle for inequality studies using negative metrics (e.g. poverty level); see

Section 5 for a discussion on this.
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Proposition 3.3. Theorem 2.1 implies the Pigou-Dalton Principle for Atkinson's

index at ϵ > 2.

Proof. Let {H∗
k}k be the income pro�le such that H∗

k = Hk for k ̸= i, j, with H∗
i =

Hi − ∆ and H∗
j = Hj + ∆∗ where ∆,∆∗ are as de�ned above. Let EDE∗(ϵ) be

Atkinson's index calculated with the income pro�le {H∗
k}k. By Theorem 2.1, there

exists fi,ϵ, f
∗
i,ϵ satisfying the conditions of that Theorem such that

EDE(ϵ) =

(∑
i

1

Hi

fi,ϵµi

)−1

and

EDE∗(ϵ) =

(∑
i

1

H∗
i

f ∗
i,ϵµi

)−1

.

We need to show that EDE∗(ϵ) ≥ EDE(ϵ). Note that

∑
i

1

H∗
i

f ∗
i,ϵµi = ∆µi

(
f ∗
i

HiH∗
i

−
f ∗
j

HjH∗
j

)
+
∑
i

1

Hi

f ∗
i,ϵµi.

The summation on the right satis�es

∑
i

1

Hi

f ∗
i,ϵµi ≤

∑
i

1

Hi

fi,ϵµi

by Theorem 2.1. The term on the left satis�es

f ∗
i

HiH∗
i

−
f ∗
j

HjH∗
j

= EDE∗(ϵ)ϵ−2

(
1

Hi(H∗
i )

ϵ−1
− 1

Hj(H∗
i )

ϵ−1

)
< 0

where the equality is by de�nition of f ∗
i (Corollary 2.1) and the inequality is because

Hi > Hj and H∗
i > H∗

j . Therefore∑
i

1

H∗
i

f ∗
i,ϵµi ≤

∑
i

1

Hi

fi,ϵµi

implying EDE∗(ϵ) ≥ EDE(ϵ).
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A non-monotonic property

As EDE(ϵ) tends to the minimum income level as ϵ increases, the EDE-factors obey

the following asymptotic property:

lim
ϵ→∞

wi(ϵ) =

1 if Hi = min{Hk}k;

0 otherwise.

However, EDE-factors demonstrate a very interesting property: subgroups that do

not correspond to the highest or lowest income may not be monotonically weighted as

ϵ increases. More precisely, let wi(ϵ) correspond to the EDE-factor of such a subgroup.

By taking the derivative, one gets

d

dϵ
wi(ϵ) =

(∑
j

(
Hj

Hi

)−ϵ

µj

)−2

µi

(∑
j

(lnHj − lnHi)

(
Hj

Hi

)−ϵ

µj

)

This is non-increasing exactly when the right-most sum is non-negative, or equiva-

lently

lnHi ≥
∑

j ̸=iH
−ϵ
j µj lnHj∑

j ̸=iH
−ϵ
j µj

.

As the right hand side is a decreasing function in ϵ (by applying the Cauchy-Schwarz

inequality on its derivative), this implies

lnHi ≥
∑
j ̸=i

lnH
µj

j .

If we assume Hi > 1 (with no loss of generality by income homogeneity), the above

inequality implies its EDE-factor will increase at lower levels of ϵ to a unique maxima

before monotonically tending to 0 as long as Hi is less than the relative geometric

mean of the other subgroups. In other words, the Atkinson index may increasingly

weight subgroups that are close to the lowest income for reasonably lower levels of ϵ.

This fact cannot be seen directly from the original de�nition of the Atkinson index

(Equation 1).

Example 3.4. Consider a population split into 3 subgroups with Atkinson weights

µ1 = 0.25, µ2 = 0.35, µ3 = 0.4 and income levels H1 = $70, 000 (lowest income),

H2 = $80, 000 (moderate income), H3 = $100, 000 (highest income). Then the graphs
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of the Atkinson index and EDE-factors are graphed below.

In this example, the moderate income subgroup H2 is increasingly weighted until

ϵ2,peak ≈ 2.76, with EDE-factor peaking at w2(ϵ2,peak) ≈ 0.377. This shows that at

low levels of inequality aversion, the calculation of EDE(ϵ) puts emphasis in both

H1 and H2, and not just the lowest income subgroup H1.

4 Maximal EDE resource allocation

Consider the problem of reallocating current resources between subgroups to achieve

maximal EDE income at inequality aversion ϵ. If pi is the (local) production function

of subgroup i and ri is the amount of resources currently allocated to subgroup i, then

the income level Hi can be expressed as Hi = piri. Assuming the sum of all current

resources equals R, this reallocation problem reduces to the following optimization

problem: Maximize

EDE(ϵ) =

(∑
i

(piri)
1−ϵµi

) 1
1−ϵ

subject to the condition ∑
i

ri = R.

If inequality aversion is not a consideration (ϵ = 0), this problem has a simple solution:

Allocate all resources to the subgroup with the highest value of piµi, i.e. best weighted

production function. However, if equity is a consideration (ϵ > 0), we need to solve

this problem via Lagrange Multipliers, telling us that EDE(ϵ) is maximized if Hi =
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H̃i,ϵ, where

H̃i,ϵ := R

(∑
j

1

pj

(
pjµj

piµi

) 1
ϵ

)−1

. (7)

Equation 7 can be compared to a similar setup described in [10].

EDE-factors o�er a quick comparison of arriving at maximal EDE resource allo-

cation given current allocation. Writing wi,ϵ = wi(ϵ), De�nition 3.1 implies

Hi = d
(
c−1
i,ϵ µi

) 1
ϵ

for an expression d that is constant across all subgroups. As Hi = piri, dividing by

pi and summing across i gives

R = d
∑
j

1

pj

(
w−1

j,ϵ µj

) 1
ϵ ,

and a rearrangement gives

Hi = R

∑
j

1

pj

(
w−1

j,ϵ µj

w−1
i,ϵ µi

) 1
ϵ

−1

(8)

which is very similar to Equation 7 for H̃i,ϵ.

Equations 7 and 8 are useful for policy making as it allows us to compare resource

allocation as a ratio between subgroups without requiring explicit knowledge on total

resources (the R's cancel out under a ratio), allowing for scalability or if total resources

are relatively unknown but with known e�ects. For instance, the expressions w−1
i,ϵ µi

and piµi, in the fractions of Equations 7 and 8 respectively, are related by a factor of

wi,ϵpi:

piµi = wi,ϵpi · (w−1
i,ϵ µi).

At current resource allocation, this means that, for each subgroup i, the product wi,ϵpi

consisting of EDE-factor (wi,ϵ) and production function (pi) can serve as a measure of

�farness� compared to the optimal resource allocation that gives rise to the maximal

EDE at a certain ϵ > 0.
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5 EDE calculations for negative metrics

Let M be a metric that varies inversely proportional to income level H (e.g. poverty

level, death rate). Such metrics are important in applications for both economics and

health [5]. Note that the EDE-adjustedM as ϵ varies cannot be calculated by directly

substituting M into Atkinson's index EDE(ϵ) (Equation 1) as this would tend to the

lowest level of M (i.e. highest level of income), contrary to what we expect.

With that said, calculations on negative metrics M can be done through our

functional equation (Theorem 2.5). For EDE-adjusted calculation on M , we require

tending to the highest level (i.e. lowest level of income) as ϵ increases. Furthermore,

we would like larger values of subgroup-level M to be emphasized so that the most

disadvantageous subgroups bear more magnitude in the computation of an EDE-

adjusted M . Therefore, we desire an arithmetic-like sum

EDE†(ϵ) :=
∑
i

Migi,ϵµi,

where gi,ϵ are functions depending on Mi and ϵ. This expression must be consistent

with the usual arithmetic sum without any considerations on inequality aversion, i.e.

EDE†(0) =
∑
i

Miµi.

Therefore, the arithmetic-like sum we seek is the expression L(M−1
i , 2+ϵ) in Theorem

2.5 as fi,2+ϵ = 1 by Corollary 2.2. By the same Theorem

EDE†(ϵ) = L(M−1
i , 2 + ϵ) = L(Mi,−ϵ)−1 = EDE(−ϵ). (9)

Equation 9 is a generalization of Sterck's observation [16] that minimizing overall

poverty level is equivalent to maxizing EDE income at ϵ = 2, for this observation is

simply a consequence of substituting ϵ = 0 into the our Equation. In other words,

our Equation extends a pointwise equivalent into a structural equivalence valid for

all ϵ ≥ 0. This is summarized as the Duality Principle below.

Duality Principle 5.1. Minimizing the EDE of a negative metric M at ϵ is equiva-

lent to maximizing the EDE of its inverse metric at ϵ+ 2.

Everything discussed in Sections 3 and 4 can be appropriately carried over to
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negative metrics by replacing ϵ with −ϵ.

EDE-factors for negative metrics

For negative metrics, the EDE-factors are

w†
i (ϵ) :=

(∑
j

(
Mi

Mj

)−ϵ

µj

)−1

µi =

(
Mi

EDE(−ϵ+ 1)

)ϵ

µi.

The three main properties still hold (income homogeneity, population homogeneity,

Pigou-Dalton Principle). In fact, our functional-analytic discussion in Section 2 is

actually a generalization of PDP in this case.

Corollary 5.2. Theorem 2.1 implies the Pigou-Dalton Principle for negative metrics

at all ϵ ≥ 0.

Proof. This is immediate by applying Proposition 3.3 to Equation 9.

The non-monotonic property of EDE-factors works the opposite way for negative

metrics: w†
i (ϵ) is strictly non-increasing as ϵ increases precisely when

lnMi ≤
∑
j ̸=i

lnM
µj

j .

Resource allocation for negative metrics

Let M be a negative metric. Typically, negative metrics are rates or probabilities

(such as poverty level), and resource allocation problems seek to optimally allocate

an amount of new resources in order to lowerM . This is an important area of research

in cost-e�ectiveness analysis, and while EDE-factors cannot globally solve the issue of

resource allocation to minimize M , it can o�er a measurement on how far a proposed

allocation strategy is from a hypothetical scenario where both M and resources can

be traded to achieve the minimal EDE M as ϵ varies.

We outline the modi�cations required to apply techniques in Section 4. Let R be

the total amount of new resource to be allocated, and let Mi, pi, ri be the respective

negative metric, production function, and amount of resources allocated to subgroup

i. If Mi is transformed to M o
i = Mi−piri after resource reallocation, and wo

i (ϵ) = wo
i,ϵ
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is the respective EDE-factor after resource allocation, then

M o
i =

(
−R +

∑
j

Mj

pj

)(∑
j

1

pj

(
(wo

i,ϵ)
−1µi

(wo
j,ϵ)

−1µj

) 1
ϵ

)−1

.

If we allow a hypothetical scenario, where the minimal of

EDEo(ϵ) =

(∑
i

(Mi − piri)
1−ϵµi

) 1
1−ϵ

can be attained subject to the condition∑
i

ri = R,

then Lagrange Multipliers imply this can be achieved when Mi = M̃i,ϵ, where

M̃i,ϵ :=

(
−R +

∑
j

Mj

pj

)(∑
j

1

pj

(
piµi

pjµj

) 1
ϵ

)−1

.

Notice this scenario where Mi = M̃i,ϵ is necessarily hypothetical as M̃i,ϵ may be

larger than Mi. In the context of poverty level, this means we are removing enough

wealth from a subgroup to cause more people to live in poverty, which is not a

realistic scenario. However, M̃i,ϵ can serve as a benchmark on how far current resource

allocation is to achieving the lowest EDE M at a certain inequality level ϵ > 0.

6 Concluding remarks

This paper demonstrated a new decomposition of the Atkinson index by way of EDE-

factors (Equation 3.1). Although many kinds of income inequality measures exist [3],

we chose to focus on the Atkinson index for applicability in both health and economics.

In health, studies have shown the Atkinson index may be the most appropriate index

for inequality analyses [7] as it allows for many di�erent interpretations of subgroup

decomposability, satis�es the Pigou-Dalton Principle, and avoid value judgement.

In economics, Shorrocks [11, 12] gave mathematical justi�cation for the generalized

entropy index to be the family of inequality measures for our purposes, and this index
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can be viewed as a monotonic transformation of the Atkinson index.

The technical aspect of our paper contributes a novel way to decompose the Atkin-

son index as we used an approach via a number-theoretic viewpoint. Our main ob-

jectives were to seek a general principle behind Atkinson's observed duality between

income at ϵ = 2 and poverty at ϵ = 0, as well as a broadening of the Pigou-Dalton

Principle. A number-theoretic viewpoint is essential to obtain our duality principle

as it is mathematically expressed via a functional equation (Theorem 2.5). This du-

ality is also hinted at in current working papers on decomposition of measures [8, 16].

As for the broadening of the Pigou-Dalton Principle, our result (Proposition 5.2;

Corollary 5.2) does not require any reference on the direction of income allocation.

We believe the framework developed in this paper may be generalized to more

classes of income inequality measures satisfying the three conditions listed at the

start of this paper (subgroup decomposability; Pigou-Dalton principle; avoids value

judgement). In particular, for inequality metrics that avoid value judgement by intro-

ducing an explicit parameter ϵ, a functional equation (dependent on ϵ) for a number-

theoretic-like L-function arising from subgroup decomposability should imply a du-

ality principle, while an analog of the Riesz-Fréchet Representation Theorem should

broaden on the Pigou-Dalton Principle.
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