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Abstract

The Atkinson index is a measure of income inequality, first defined in 1970
by invoking the idea of Equally Distributed Equivalent (EDE), i.e. the level of
income that, if equally distributed in a hypothetical scenario, would give the
same level of welfare as the current income distribution. Using functional ana-
lytic techniques with an L-function viewpoint, we reinterpret the Atkinson index
as a harmonic-like weighted sum. This allows us to derive a duality principle on
inequality that, among other things, implies minimizing poverty is equivalent
to maximizing wealth at inequality aversion parameter ¢ = 2. Furthermore, our
reinterpretation allows us to use the Riesz-Fréchet Representation Theorem to
broaden on the Pigou-Dalton Principle for EDE. We also explain an application
to estimate the optimality of resource allocation towards achieving maximal

welfare under equity considerations.
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1 Introduction

Many measures exist to estimate population inequality in both economics and health
[3], with the Gini index being the most famous. However, a good measure for inequal-
ity analyses should satisfy three important properties [7]: subgroup decomposability,
where total inequality is divided into its constituent components; the Pigou-Dalton
Principle, where a transfer of a desirable variable (e.g. wealth) from the rich to the
poor results in less inequality as long as it does not bring the rich to a worse situation
than the poor; and avoids value judgement, for instance by including an explicit pa-
rameter that changes the weights placed on various percentiles of the distribution (to
allow sensitivity analysis with respect to this parameter for policy decisions). Using
this definition of goodness, the Gini index does not qualify as a good measure for
inequality analyses as it does not avoid value judgement. Rather, a detailed analysis
of inequality measures (by the same paper [7]) concluded that the Atkinson index
[1] stands out as the best inequality measure in health. Additionally, a quantitative
analysis of income inequality measures by Shorrocks imply the generalized entropy
index |11, Equation 31] is the only one-parameter family that is subgroup decompos-
able under relatively weak restrictions on homogeneity, and the generalized entropy
index can be viewed as a monotonic transformation of the Atkinson index. As such,
we focus on the Atkinson index in this paper.

Atkinson defined his index in [I] by invoking the idea of Equally Distributed
Equivalent (EDE), reflecting the willingness to trade off aggregate benefits for income

to be more equally distributed. This index is defined on the real line as

(Z H¢1_€Mi> _ e#1
EDE(e) := i

HHZM‘ e=1

)

(1)

where H; is the income level for subgroup ¢ with each H; distinct and nonzero, y; is
a weight for subgroup 4 (with the sum of all u; equaling 1), and € is the Atkinson in-
equality aversion parameter. The weights u; are chosen depending on the application.
In Atkinson’s original formulation, y; is simply the proportion of the total population
at income level H;, but u; can also be income-dependent, causality-dependent, and

so on [10].



Our definition of EDFE(e) is the non-normalized form of the definition given by
Atkinson. Also, instead of restricting e to be strictly non-negative, we allow use of
the entire real line as it gives rise to a duality principle (Duality Principle with
important applications in both economics and health.

The goal of this paper is to understand the Atkinson index as weighted sums of
the income levels H;. In order to agree with the original work of Atkinson, such
a weighted sum has to give greater weight to lowest income at higher inequality
aversion €, implying that the weighted sum needs to be harmonic-like as it emphasizes
sensitivity to low-income groups. Temporarily suppose ¢ > 2 and abstractly consider

the sum .
1
AH (e) := (; Efi,e,ui)

where f; . are non-negative functions in € to be determined. We will show the existence
of unique f;.’s minimizing AH (e) with respect to a technical constraint (Theorem
2.1). Furthermore, this minimum value coincides with the Atkinson index EDE((e).
For € < 2, we will show that AH(¢) can be analytically continued to the entire real
line except for a removable singularity at ¢ = 1. This implies the initial supposition
of € > 2 can be lifted, and AH (¢) gives a way to decompose EFDFE(e) into subgroup
components for all values of e.

The decomposition of the Atkinson index into AH (¢) will be proven in Section
Following this, we demonstrate how our techniques broaden on the Pigou-Dalton
Principle for the Atkinson index, as well as giving greater subgroup-level insights in
EDE weighting of subgroups (Section . We then illustrate a use of our decomposi-
tion in the context of resource allocation (Section [4)), before ending with an important
duality principle that unifies opposite metrics such as wealth and poverty (Section
. Our duality principle is derived by showing that the harmonic-like sum AH (¢) is
transformed into an arithmetic-like sum at € < 0, vastly generalizing a recent obser-
vation of Sterck [16] that minimizing overall poverty level is equivalent to maximizing
EDFE income at € = 2.

2 Functional analysis on Atkinson’s index

The definition of Atkinson’s index is a little opaque for subgroup-level analyses at first

glance. For instance, it does not inform us how the H;’s are differentially weighted



at certain Atkinson parameter e. While Shorrocks performed a subgroup decompo-
sition on the Atkinson index into an arithmetic-like sum to obtain subgroup-level
information |11, 12], we decompose EDE(e) in an alternative way as a harmonic-like

Ssum
EDE(e) = (Z Hifu>

for a family of functions f;. in € and depending on H; and p;. These functions
fi.e are uniquely determined, and an expression can be derived by performing partial
differentiation with respect to H;. However, partial differentiation does not give much
insight beyond the work done by Shorrocks in his analysis. In particular, Shorrocks
mentioned that his analog of f; .i; cannot be reasonably considered to be weights, as
their sum over the subgroups does not equal 1 in general.

It is worth mentioning that our proposed sum is harmonic-like while Shorrocks
used an arithmetic-like sum in his analysis. We believe a harmonic-like sum is more
appropriate as the Atkinson index is more sensitive to lower income subgroups as €
increases, which is reflected in an harmonic-like sum (but not an arithmetic-like sum).
However, arithmetic-like sums do come in play in our analysis as they will be essential
when considering negative metrics such as poverty level (Section .

We now list some basic properties of the Atkinson index EDFE(e) (Equation
that is almost immediate from definition. FDFE(e) gives increasingly greater weight
to the subgroup with lowest income as € increases, and is a monotonic decreasing
function in e. In particular, EDF(e) plateaus to the minimum income level among
the subgroups as € increases, and plateaus to the maximum income level among the
subgroups as € decreases. Further, by definition of the utility function for Atkinson’s

index
1—e

:1—6

and its concavity, the Atkinson index satisfies the main properties of social wel-

U(z)

fare measures, such as income homogeneity, population homogeneity, and the Pigou-
Dalton Principle [1, 11]. These three properties will also be elaborated on in the next
Section.

The purpose of this section is to prove the following mathematical results. For con-
venience in the arguments, these results are formulated as the inverse of the Atkinson

index as stated in Equation [I]



Theorem 2.1. Lete > 2, let p = e—1, and let q be the number such that 1/p+1/q = 1.

Then there exist a unique collection of non-negative values f; . satisfying

Zfz({eﬂ’i = 17

and such that these f; . mazimizes the expression

F(fie) = Z fZI_ZLZ

Furthermore, this mazimum value equals EDE(e)™".
Corollary 2.2. The values f;. in Theorem[2.1] can be explicitly determined:

(S0 ) )

J

This can be viewed as an analytic function at € # 1.

Theorem 2.3. Let € > 2. Suppose q > 1 is a number satisfying the following two

conditions.

o There exists unique values f; > 0 such that
Z fiq/iz' =1
i
and f; maximizes the expression

F(a;) = Z %ai,ui.

o F(f:) equals EDE(€)™!, where f; is specified in the above condition.
Then q is unique, and equals the value in Theorem[2.1]

Theorem 2.4 (Analytic Continuation). Let q be as defined in Theorem . Consider



the real-valued function

Z fzqeﬂz—l
f1>0

L(H;,¢) := max {Z L G'uz}

which is well-defined on € > 2 by Theorem . Then L(H;, €) can be analytically con-
tinued to the entire real line, except for a removable singularity at e = 1. Furthermore,

L(H;, ¢€) is a positive function with L(H;,e) = EDE(e)™!
Theorem 2.5 (Functional Equation). The function L(H;, €) defined in Theorem

satisfies
L(H;, —€) ' = L(H; ', 2 +e).

In summary, the five mathematical statements above narrate the following story.
Theorem gives a mathematical justification that a harmonic-like decomposition
for the Atkinson index at € > 2 is in fact robust. Corollary explicitly defines the
components f; . of the harmonic-like decomposition. Theorem tells us that the
technical condition imposed on f; . allows us to deform Atkinson weights in a well-
defined manner as € varies, and is the only sensible deformation that naturally extends
Atkinson weights as € varies. In particular, this Theorem shows our definition of EDE-
factors in the next Section makes sense (Definition [3.1). Theorem 2.4 mathematically
justifies our harmonic-like decomposition agrees with the Atkinson index at all €
(not just € > 2). Finally, Theorem exhibits a dual pairing on the harmonic-like

decomposition that results in a duality principle that will be explained in Section
(Duality Principle [5.1]).

Proof of Theorem [2.1] Let X be a countable measure space with discrete probabil-
ity measure p, and let ' be an injective real-valued positive Lebesgue-measurable

function on X. Then the p-norm of F' is simply

3=

£l = (Z Ffm)

In our case where F; = 1/H;,

S =

1Elp = <Z H; pm)
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By the Riesz-Fréchet Representation Theorem for LP-spaces |15, Chapter 1], there

exist non-negative values f; such that

1
F = Tr JiHD (s
1 = g 45" s

fi=0

where ¢ is the number such that 1/p 4+ 1/¢ = 1. If we can find values f; for this
equality to hold, then we are done as the left-hand side ||F||, equals EDE(e)~* after
recalling p =€ — 1.

Following this discussion, we need to solve an optimization problem: Find numbers

Z H%fi/h’ (2)

fi > 0 that maximizes

subject to the condition
> flw=1  0<I<1. (3)

Clearly, f; cannot be simultaneously zero for all <. Using Lagrange Multipliers, there

exist a constant \; depending on [ such that

1 _
E,ui = )\Iinq l,ui-

Hence )

1 a—1
Ji= (Aqui) '

Substituting f; to Equations [2| and [3] gives

1 L 1\
Z Efim =N Z (W) i

T 1 \ a1 “a
A T =l Z(q[—[) Hi

Since g, Hz, w; are all known constants, to maxnmze Equation [2] we will need to max-

and

imize )\ 71 which requires maximizing = , and this last expression is an increasing



function on [ as ¢ — 1 > 0. Therefore, necessarily [ = 1 for our optimization problem.

In summary, for each f;,

(=()7) .

These f;’s are exactly the f; . we seek. O

Proof of Corollary[2.2. This is an algebraic manipulation of Equation [ to rewrite it

into two different ways. O]

Proof of Theorem[2.3. By manipulating Equation

EDE(k)\ o7 1
R (e A4 =94
= () T Pl

Therefore, we can view

= ZHiszz

as a function in g. To prove the Theorem, it suffices to show that this function is

monotone decreasing in q. A computation tells us that the derivative with respect to

qis
1 /
Z H.Ji'“i

fit, (EDE) fuue EDE(k)
q—l Z ( - > q—l Z[—[ EDE(k)

Z

f@uz fitti EDE’ (k)
N q—lZ nA) T ZH EDE(k)’ (5)

Here, EDE'(k) is the derivative of EDFE(k) with respect to g.
We now need to show that the first and second term of Equation [5| are both
negative. The second term is negative as EDE'(k) is the only part of the term that

8



is negative:

EDE'(k) = EDE(k) - ((1——1/-6)2 (Z HB‘%) + (Z Hﬁm)) g :11)2-

For the first term, note that

fing

> J;}‘ In(f;) = In (H £ )

so we are reduced to showing that the product inside the logarithm is at least 1.

Using the weighted power mean inequality, more specifically the weighted GM-HM
inequality [2] Chapter 3|,

fins fipi p=1\ 1 i T,
Hf o > i, /i (6)
7 (2 i

We now make the observation that
fitti -1 1
-1 _ — 1y
2
so by the first condition in the statement of the Theorem,
Jibti ;4 fitti
-1 < )

Hence the fraction in the right hand side of Equation [6]is at most 1, implying

f. .
> f

fipi =1\ 71
(Zz H; fz > > 1
firti -

and we are done. O

Proof of Theorem[2.4. Note that both L(H;,¢) and EDFE(e)~! are analytic functions
defined on the interval (—oo,1) U (1,00). As L(H;,e) = EDE(e)™! on (2,00), the
Identity Theorem [6, Chapter 1] implies they must also be equal on (1, c0).

We now apply the Identity Theorem on (—oo, 1) by showing that L(H;,1/n) equals

9



EDE(1/n)~! for all positive integers n > 2. By Corollary [2.2]

1 HA\w 71+ﬁ 11
_ J ) i
L(m)=¥ (z (%) u3> z

4 J

as desired. [

Proof of Theorem [2.5 If € > 0, a calculation reveals

—(1+¢) -(1-12)
R ) 3 (G ) e

-(1-1)
(o) (e

7 %

= <Z H}“ui)
= EDE(—¢)
= L(H,—e)™"

1
1+e€

where the last equality is due to Theorem 2.1 Finally, the condition ¢ > 0 can be
dropped by the Identity Theorem. O

3 EDE-factors

Due to Section [2| the Atkinson index can be decomposed as a harmonic-like sum

EDE(e (Z — i eu,)

10



where f;. is defined as

(E@)
Zln (%) 11 e=1.

These f; . satisfy a technical weighted normality condition:

q e—1
A Z: 17 p— ;
Ei Jielt 1=

fi,e =

allowing us to extend Atkinson’s weights p; through the expressions ff{ep,l-. In other
words, an extension of Atkinson’s weights is done via a g-analog of the expression
fiepti- Such an extension requires agreement with Atkinson’s weight without inequal-
ity aversion considerations, i.e. w;(0) = u;. As such, we need to shift € by 1 for this
equality to hold. Note that this is a choice of normalization to recover Atkinson’s

weigh at € = 0, and is not something intrintic to inequality aversion itself.

Definition 3.1. The EDE-factor for subgroup i can be explicitly defined in two ways:

wo= (S () 1) e (EPECEVY,

J

Before discussing properties of EDE-factors, we give a simple example of EDE-

factors on two hypothetical policy scenarios.

Example 3.2. Consider a population split into 2 subgroups with equal Atkinson
weights 1 = pp = 0.5 and income levels H; = $70,000, Hy, = $100,000. Also
consider two Scenarios: A, where individuals in the lower income subgroup 1 are
given additional $5,000; and B, where individuals in the higher income subgroup 2
are given additional $20,000. Then the graphs of the Atkinson index (computing
EDE) and EDE-factors (computed using Definition are graphed below. Our

choice of graphing e between 0 and 20 is deliberate as elicitation of € in health or

11



income generally falls in this range [4] 9, [14].
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If inequality aversion is not considered, Scenario B results in a higher average income
as four-fold more resources are additionally given compared to Scenario A. However,
a computation of EDE income shows a more rapid decrease, with a tipping point
at €, ~ 3.37 and EDE(ey,) ~ $84,500. This is also evident by the EDE-factors,
as Scenario B puts a much higher weight on the lower income subgroup in EDE

computations due to a larger income gap between subgroups.

Immediate properties from functional analysis

From our discussion in the previous Section, clearly the EDE-factors w;(€) are non-

negative and sum to 1 for all e:
sz‘(G) =1.

At e = 0, this is simply the base case condition that the sum of all x; equal 1. These
EDE-factors can be seen as a spiritual answer to questions raised in [I0, 11] on a
method to decompose measures, such as the Atkinson’s index, as a simple weighted
sum. We now discuss how EDE-factors generalize most of the homogeneity and
transfer properties in Atkinson’s index.

Income homogeneity. By Definition the EDE-factors w;(€) are not affected by
a uniform scaling of income levels H; — kH; for some positive constant k. Thus, by
Theorem [2.4] this implies income homogeneity for Atkinson’s index, i.e. EDE(e) is
multiplied by the same constant k under a uniform scaling of income levels.

Population homogeneity. To show that the EDE-factors satisfy population homo-

12



geneity, suppose each subgroup i is replicated n times (7,1),..., (i,n) and each repli-
cation is weighted wy, ..., w,, with the wy’s summing to 1. Then H(; ) = -+ = H; ),
and each subgroup (i,7n) is weighted p;w, in Atkinson’s index. Therefore, its corre-

sponding EDE-factor is

= wy, - w;(€).

As the weights w;(¢) are g-analogs of the expression f; .,

-1

-1
1 1
(Za: XZ: mf(i,a),emwa) (Z Efi,em z@: wa>
) -1
= Z Ff%,e/“bz

= EDE(e)

which proves population homogeneity.

Pigou-Dalton Principle. The Pigou-Dalton Principle is a transfer principle that
asserts any social welfare function must prefer allocations that are more equitable.
Formally, it H; > Hj, then a transfer of A > 0 from H; to H;, in such a way that

Hi—A>H +A, A =AL
Hj
must not decrease EDFE(e). This is easily seen to hold for the Atkinson index due to
the concavity of the utility function.

We prove that the Pigou-Dalton Principle is a special case of Theorem when
€ > 2, though the Theorem cannot be used to prove the Pigou-Dalton Principle at
0 < € < 2. However, this is sufficient to show that Theorem [2.1] generalizes the Pigou-
Dalton Principle for inequality studies using negative metrics (e.g. poverty level); see

Section [l for a discussion on this.

13



Proposition 3.3. Theorem implies the Pigou-Dalton Principle for Atkinson’s
index at € > 2.

Proof. Let {H}, be the income profile such that H; = Hy for k # i, j, with H} =
H; — A and H; = Hj; + A* where A, A* are as defined above. Let EDE*(e) be
Atkinson’s index calculated with the income profile {H}},. By Theorem there

exists fi., f; satistying the conditions of that Theorem such that

1
EDE(e) = (Z %fﬂ)
and

-1
1
EDE*(e) = E — [ :
(€> ( i H;k fz,e”)
We need to show that EDE*(¢) > EDFE(e). Note that
1 fr Vi 1
E — Jreki = Ap o E — fietti-

The summation on the right satisfies

1 1
ZZ, o, it S Z o, et
by Theorem [2.1] The term on the left satisfies

f: 1 i 1 1
i — EDE*(e)° -
HH; ~ HH O\ Gm— ~ mm

<0

where the equality is by definition of f} (Corollary and the inequality is because
H; > Hj; and H} > H}. Therefore

Z %fz*eﬂl < Z %fi,em

implying EDE*(e) > EDE(e). O

14



A non-monotonic property

As EDE(e) tends to the minimum income level as € increases, the EDE-factors obey

the following asymptotic property:

_ 1 if H; = min{Hy};
lim w;(e) =
e 0 otherwise.
However, EDE-factors demonstrate a very interesting property: subgroups that do
not correspond to the highest or lowest income may not be monotonically weighted as
e increases. More precisely, let w;(€) correspond to the EDE-factor of such a subgroup.

By taking the derivative, one gets

e (52 ) - ()

J J

This is non-increasing exactly when the right-most sum is non-negative, or equiva-

lently
Zj;éi H;“pjIn H;
Zj;ﬁi Hj_eﬂj

As the right hand side is a decreasing function in e (by applying the Cauchy-Schwarz

thZ‘ Z

inequality on its derivative), this implies

InH; > InHP.
J#
If we assume H; > 1 (with no loss of generality by income homogeneity), the above
inequality implies its EDE-factor will increase at lower levels of € to a unique maxima
before monotonically tending to 0 as long as H; is less than the relative geometric
mean of the other subgroups. In other words, the Atkinson index may increasingly
weight subgroups that are close to the lowest income for reasonably lower levels of e.

This fact cannot be seen directly from the original definition of the Atkinson index
(Equation [I)).

Example 3.4. Consider a population split into 3 subgroups with Atkinson weights
1 = 0.25, us = 0.35, u3 = 0.4 and income levels H; = $70,000 (lowest income),
H, = $80,000 (moderate income), Hy = $100, 000 (highest income). Then the graphs

15



of the Atkinson index and EDE-factors are graphed below.
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In this example, the moderate income subgroup Hs is increasingly weighted until
€2 peak ~ 2.76, with EDE-factor peaking at wa(€2peqr) ~ 0.377. This shows that at
low levels of inequality aversion, the calculation of EDFE(e) puts emphasis in both

H, and H,, and not just the lowest income subgroup H;.

4 Maximal EDE resource allocation

Consider the problem of reallocating current resources between subgroups to achieve
maximal EDE income at inequality aversion e. If p; is the (local) production function
of subgroup ¢ and r; is the amount of resources currently allocated to subgroup ¢, then
the income level H; can be expressed as H; = p;r;. Assuming the sum of all current
resources equals R, this reallocation problem reduces to the following optimization

problem: Maximize
1

EDE(e) = (Z(pm)le/v%) B

)

subject to the condition

ZTZ':R.

i
If inequality aversion is not a consideration (¢ = 0), this problem has a simple solution:
Allocate all resources to the subgroup with the highest value of p;u;, i.e. best weighted
production function. However, if equity is a consideration (e > 0), we need to solve

this problem via Lagrange Multipliers, telling us that EDF(e) is maximized if H; =

16



H; ., where

1 —1
HiGZ:R —_— aeiac] . 7
’ <zj:pj (pim ) (™)

Equation [7| can be compared to a similar setup described in [10].
EDE-factors offer a quick comparison of arriving at maximal EDE resource allo-

cation given current allocation. Writing w; . = w;(€), Definition implies

o=

H;=d (Ci_,elui)

for an expression d that is constant across all subgroups. As H; = p;r;, dividing by

p; and summing across ¢ gives

1 _ 1
RZdZ; (wiemi)
j J

and a rearrangement gives

=

m-r(y (u) ®)

. -1
T Pi\ Wi Hi

which is very similar to Equation |7 for ﬁ;

Equations[7] and [§] are useful for policy making as it allows us to compare resource
allocation as a ratio between subgroups without requiring explicit knowledge on total
resources (the R’s cancel out under a ratio), allowing for scalability or if total resources
are relatively unknown but with known effects. For instance, the expressions w; L
and p;u;, in the fractions of Equations (7| and [8] respectively, are related by a factor of
Wi ePi

Difl; = W; Pj - (wi;lﬂz‘)-
At current resource allocation, this means that, for each subgroup 7, the product w; (p;
consisting of EDE-factor (w; ) and production function (p;) can serve as a measure of

“farness” compared to the optimal resource allocation that gives rise to the maximal
EDE at a certain € > 0.

17



5 EDE calculations for negative metrics

Let M be a metric that varies inversely proportional to income level H (e.g. poverty
level, death rate). Such metrics are important in applications for both economics and
health [5]. Note that the EDE-adjusted M as € varies cannot be calculated by directly
substituting M into Atkinson’s index EDE(¢) (Equation [1)) as this would tend to the
lowest level of M (i.e. highest level of income), contrary to what we expect.

With that said, calculations on negative metrics M can be done through our
functional equation (Theorem . For EDE-adjusted calculation on M, we require
tending to the highest level (i.e. lowest level of income) as e increases. Furthermore,
we would like larger values of subgroup-level M to be emphasized so that the most
disadvantageous subgroups bear more magnitude in the computation of an EDE-

adjusted M. Therefore, we desire an arithmetic-like sum
EDE'(e) := Y Migi i,

where g; . are functions depending on M, and e. This expression must be consistent

with the usual arithmetic sum without any considerations on inequality aversion, i.e.
EDE™(0) =Y Mu;.
i

Therefore, the arithmetic-like sum we seek is the expression L(M; ', 2+¢) in Theorem
as fiaye = 1 by Corollary By the same Theorem

EDE"(e) = L(M;*,2 + ¢) = L(M;, —¢) ™' = EDE(—e). (9)

Equation [J] is a generalization of Sterck’s observation [I6] that minimizing overall
poverty level is equivalent to maxizing EDE income at € = 2, for this observation is
simply a consequence of substituting ¢ = 0 into the our Equation. In other words,
our Equation extends a pointwise equivalent into a structural equivalence valid for

all € > 0. This is summarized as the Duality Principle below.

Duality Principle 5.1. Minimizing the EDE of a negative metric M at € is equiva-

lent to maximizing the EDE of its inverse metric at € 4 2.

Everything discussed in Sections [3] and [ can be appropriately carried over to

18



negative metrics by replacing ¢ with —e.

EDE-factors for negative metrics

For negative metrics, the EDE-factors are

wj(ﬁ) = (Z (]\Aj;)_eﬂj>_lui = (EDE?[—[ie+1))€/Li'

J

The three main properties still hold (income homogeneity, population homogeneity,
Pigou-Dalton Principle). In fact, our functional-analytic discussion in Section [2] is

actually a generalization of PDP in this case.

Corollary 5.2. Theorem 2.1 implies the Pigou-Dalton Principle for negative metrics
at all e > 0.

Proof. This is immediate by applying Proposition [3.3] to Equation [9] O

The non-monotonic property of EDE-factors works the opposite way for negative
.I.

metrics: w, (€) is strictly non-increasing as € increases precisely when

InM; <) In M},
J#i

Resource allocation for negative metrics

Let M be a negative metric. Typically, negative metrics are rates or probabilities
(such as poverty level), and resource allocation problems seek to optimally allocate
an amount of new resources in order to lower M. This is an important area of research
in cost-effectiveness analysis, and while EDE-factors cannot globally solve the issue of
resource allocation to minimize M, it can offer a measurement on how far a proposed
allocation strategy is from a hypothetical scenario where both M and resources can
be traded to achieve the minimal EDE M as e varies.

We outline the modifications required to apply techniques in Section 4. Let R be
the total amount of new resource to be allocated, and let M;, p;, r; be the respective
negative metric, production function, and amount of resources allocated to subgroup

i. If M; is transformed to MY = M; — p;r; after resource reallocation, and wf(e) = wg,
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is the respective EDE-factor after resource allocation, then

MY = (—R—sz:]]\f_j) (;%(%)1>

If we allow a hypothetical scenario, where the minimal of

1

EDE°(e) = (Z(Mz —pz”f“z’)l_ﬁui> B

7

can be attained subject to the condition

Zri:R7

)

then Lagrange Multipliers imply this can be achieved when M; = ]\7;, where

1 —1
r M; L (pipi \ <
M= |-R+) —* Z—.( . ) :
~ P ~ P \PjH;

—

Notice this scenario where M; = M, . is necessarily hypothetical as Z\/j; may be

larger than M;. In the context of poverty level, this means we are removing enough
wealth from a subgroup to cause more people to live in poverty, which is not a

realistic scenario. However, M, . can serve as a benchmark on how far current resource

allocation is to achieving the lowest EDE M at a certain inequality level € > 0.

6 Concluding remarks

This paper demonstrated a new decomposition of the Atkinson index by way of EDE-
factors (Equation [3.1)). Although many kinds of income inequality measures exist [3],
we chose to focus on the Atkinson index for applicability in both health and economics.
In health, studies have shown the Atkinson index may be the most appropriate index
for inequality analyses [7] as it allows for many different interpretations of subgroup
decomposability, satisfies the Pigou-Dalton Principle, and avoid value judgement.
In economics, Shorrocks [IT], 12] gave mathematical justification for the generalized

entropy index to be the family of inequality measures for our purposes, and this index
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can be viewed as a monotonic transformation of the Atkinson index.

The technical aspect of our paper contributes a novel way to decompose the Atkin-
son index as we used an approach via a number-theoretic viewpoint. Our main ob-
jectives were to seek a general principle behind Atkinson’s observed duality between
income at € = 2 and poverty at e = 0, as well as a broadening of the Pigou-Dalton
Principle. A number-theoretic viewpoint is essential to obtain our duality principle
as it is mathematically expressed via a functional equation (Theorem [2.5)). This du-
ality is also hinted at in current working papers on decomposition of measures |8 [16].
As for the broadening of the Pigou-Dalton Principle, our result (Proposition
Corollary does not require any reference on the direction of income allocation.

We believe the framework developed in this paper may be generalized to more
classes of income inequality measures satisfying the three conditions listed at the
start of this paper (subgroup decomposability; Pigou-Dalton principle; avoids value
judgement). In particular, for inequality metrics that avoid value judgement by intro-
ducing an explicit parameter €, a functional equation (dependent on €) for a number-
theoretic-like L-function arising from subgroup decomposability should imply a du-
ality principle, while an analog of the Riesz-Fréchet Representation Theorem should

broaden on the Pigou-Dalton Principle.
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